A cell type and state specific gene regulation network inference method for immune regulatory analysis

基因调控网络 推论 电池类型 计算机科学 计算生物学 基因表达调控 基因 数据挖掘 生物 细胞 基因表达 人工智能 遗传学
作者
Xiong Li,K. Murali Krishna Rao,Chuang Chen,Yuejin Zhang,Juan Zhou,Meng Xu,Yi Hua,Jie Li,Hao Chen
出处
期刊:npj systems biology and applications [Springer Nature]
卷期号:11 (1): 94-94
标识
DOI:10.1038/s41540-025-00564-4
摘要

The gene regulatory network inference method based on bulk sequencing data not only confuses different types of cells, but also ignores the phenomenon of network dynamic changes with cell state. Single cell transcriptome sequencing technology provides data support for constructing cell type and state specific gene regulatory networks. This study proposes a method for inferring cell type and state specific gene regulatory networks based on scRNA-seq data, called inferCSN. Firstly, inferCSN infers pseudo temporal information from scRNA-seq data and reorders cells based on this information. Because of the uneven distribution of cells in pseudo temporal information, the regulatory relationship tends to lean towards the high-density areas of cells. Therefore, based on the cell state, we divide the cells into different windows to eliminate the temporal information differences caused by cell density. Then, a sparse regression model, combined with reference network information, is used to construct a cell type-specific regulatory network (CSN) for each window. The experimental results on both simulated and real scRNA-seq datasets show that inferCSN outperforms other methods in multiple performance metrics. In addition, experimental results on datasets of different types (such as steady-state and linear datasets) and scales (different cell and gene numbers) show that inferCSN is robust. To further demonstrate the effectiveness and application prospects of inferCSN, we analyzed the gene regulatory network of T cells in different states and different tumor subclons within the tumor microenvironment, and we found that comparing the regulatory networks in different states can reveal immune suppression related signaling pathways.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖发布了新的文献求助10
刚刚
BowieHuang应助伶俐的血茗采纳,获得10
刚刚
1秒前
只道寻常完成签到,获得积分10
1秒前
冷冷完成签到,获得积分20
2秒前
2秒前
冉江波完成签到,获得积分10
2秒前
zhenzhen完成签到,获得积分20
2秒前
科研通AI6应助开始游戏55采纳,获得10
2秒前
3秒前
Ethereal完成签到,获得积分10
3秒前
忧郁的冷雁完成签到,获得积分10
3秒前
3秒前
3秒前
过pass完成签到,获得积分10
3秒前
3秒前
阿豆发布了新的文献求助10
3秒前
安详沧海发布了新的文献求助10
3秒前
4秒前
慕青应助Kate采纳,获得10
4秒前
asda完成签到,获得积分20
4秒前
5秒前
CodeCraft应助顺心绮兰采纳,获得10
5秒前
橙子发布了新的文献求助10
5秒前
5秒前
Dream完成签到,获得积分20
5秒前
5秒前
NexusExplorer应助呃呃呃采纳,获得10
6秒前
科研通AI6应助义气的碧玉采纳,获得10
6秒前
Rella完成签到,获得积分10
6秒前
桐桐应助专注白昼采纳,获得10
7秒前
直率愫完成签到,获得积分10
7秒前
7秒前
喵喵肉丸完成签到,获得积分10
8秒前
8秒前
xiaomiao发布了新的文献求助10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
仙妮宝贝发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546479
求助须知:如何正确求助?哪些是违规求助? 4632273
关于积分的说明 14626188
捐赠科研通 4573977
什么是DOI,文献DOI怎么找? 2507901
邀请新用户注册赠送积分活动 1484538
关于科研通互助平台的介绍 1455722