Benchmarking Cofolding Methods for Molecular Glue Ternary Structure Prediction

标杆管理 胶水 三元运算 计算机科学 计算生物学 材料科学 生物 业务 复合材料 营销 程序设计语言
作者
Yilan Liao,Jintao Zhu,Juan Xie,Luhua Lai,Jianfeng Pei
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c01860
摘要

Molecular glues (MGs) represent an emerging therapeutic paradigm capable of inducing or stabilizing protein–protein interactions (PPIs), with broad applications in creating neomorphic interactomes and targeted protein degradation. However, current discovery efforts remain largely confined to experimental screening, while in silico rational design of MGs remains a formidable challenge. A critical step toward rational design lies in accurate ternary complex modeling, which is less explored and highly challenging due to the involvement of small-molecule-induced de novo PPIs. Here, we tested the ability of recently developed cofolding models, including AlphaFold 3, Boltz-1, Chai-1, Protenix, and RoseTTAFold All-Atom. Although these models were not specifically trained on ternary complex structures, whether their capability to learn diverse interatomic interactions can generalize well to such ternary systems remains an open question. We systematically curated a data set, named MG-PDB, with 221 noncovalent MG-engaged ternary complexes. MGBench was further introduced as a comprehensive benchmark set, which comprises 88 ternary structures excluded from cofolding models' training data through rigorous time-based partitioning. Our benchmark results demonstrated that AlphaFold 3 achieved the best overall performance among cofolding methods, in terms of both PPI interface prediction (50.6% success rate) and MG–protein interaction recovery (32.9% success rate). However, our homology study showed that most of their successful predictions actually stemmed from memorization. Further analysis revealed three phenomena of current cofolding methods for MG ternary structure prediction. First, these methods struggle to accurately model large interaction interfaces. Second, their predictive accuracy is notably reduced for domain–domain complexes compared to domain–motif interactions. Lastly, they face specific challenges in modeling MG degrader complexes with sufficient accuracy. We showcased they relied on the existing interaction patterns and highlighted the need for further improvements in novel E3 ligase systems. These findings reveal fundamental gaps in existing methods to learn atomic-level interaction rules for MG-engaged ternary complex modeling. As fully open resources, MG-PDB and MGBench establish the essential benchmark for MG ternary complex modeling, providing the definitive standard for evaluating future cofolding methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星光完成签到 ,获得积分10
1秒前
1秒前
1秒前
深情安青应助医学牲纽蚂采纳,获得10
2秒前
隐形曼青应助扣子采纳,获得10
2秒前
小蘑菇应助jiuwu采纳,获得10
3秒前
scugy发布了新的文献求助10
3秒前
林柚完成签到 ,获得积分10
3秒前
libing完成签到,获得积分10
3秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
沉静傥完成签到,获得积分20
9秒前
Channing发布了新的文献求助10
10秒前
Clifton完成签到 ,获得积分10
11秒前
12秒前
nini完成签到 ,获得积分10
13秒前
科研通AI6应助神勇的煎蛋采纳,获得10
13秒前
朝阳关注了科研通微信公众号
15秒前
15秒前
scugy完成签到,获得积分10
15秒前
青城山下小星瞳完成签到,获得积分10
16秒前
蔡徐坤完成签到,获得积分20
18秒前
Hooray完成签到 ,获得积分10
18秒前
这个研究生不读也罢完成签到,获得积分10
19秒前
正直的念梦完成签到,获得积分10
20秒前
晚风完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
lxb完成签到,获得积分10
23秒前
悠悠发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490133
求助须知:如何正确求助?哪些是违规求助? 4588844
关于积分的说明 14421594
捐赠科研通 4520646
什么是DOI,文献DOI怎么找? 2476796
邀请新用户注册赠送积分活动 1462282
关于科研通互助平台的介绍 1435188