FocalTransNet: A Hybrid Focal-Enhanced Transformer Network for Medical Image Segmentation

图像分割 人工智能 计算机视觉 计算机科学 图像处理 分割 变压器 尺度空间分割 图像(数学) 电压 工程类 电气工程
作者
Miao Liao,Ruixin Yang,Yuqian Zhao,Wei Liang,Junsong Yuan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3602739
摘要

CNNs have demonstrated superior performance in medical image segmentation. To overcome the limitation of only using local receptive field, previous work has attempted to integrate Transformers into convolutional network components such as encoders, decoders, or skip connections. However, these methods can only establish long-distance dependencies for some specific patterns and usually neglect the loss of fine-grained details during downsampling in multi-scale feature extraction. To address the issues, we present a novel hybrid Transformer network called FocalTransNet. specifically, we construct a focal-enhanced (FE) Transformer module by introducing dense cross-connections into a CNN-Transformer dual-path structure and deploy the FE Transformer throughout the entire encoder. Different from existing hybrid networks that employ embedding or stacking strategies, the proposed model allows for a comprehensive extraction and deep fusion of both local and global features at different scales. Besides, we propose a symmetric patch merging (SPM) module for downsampling, which can retain the fine-grained details by stablishing a specific information compensation mechanism. We evaluated the proposed method on four different medical image segmentation benchmarks. The proposed method outperforms previous state-of-the-art convolutional networks, Transformers, and hybrid networks. The code for FocalTransNet is publicly available at https://github.com/nemanjajoe/FocalTransNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烂漫念柏完成签到,获得积分10
刚刚
小轩123完成签到,获得积分20
刚刚
青易完成签到,获得积分10
1秒前
1秒前
Akim应助hux采纳,获得10
1秒前
圣诞节完成签到,获得积分10
1秒前
茹茹关注了科研通微信公众号
1秒前
2秒前
3秒前
zyd完成签到,获得积分10
3秒前
xaioniu完成签到,获得积分20
4秒前
343727237@qq.com完成签到,获得积分10
4秒前
zhihaiyu完成签到,获得积分10
4秒前
隐尘完成签到,获得积分10
4秒前
Loooong应助wxnice采纳,获得10
4秒前
黄青青发布了新的文献求助10
4秒前
lhy完成签到,获得积分10
5秒前
5秒前
小轩123发布了新的文献求助10
5秒前
科研吴彦祖完成签到,获得积分10
5秒前
小宇完成签到 ,获得积分10
5秒前
董方圆应助whutyoyo采纳,获得10
5秒前
5秒前
6秒前
111发布了新的文献求助10
6秒前
小蘑菇应助Ywffffff采纳,获得10
6秒前
7秒前
7秒前
ZRR完成签到,获得积分20
7秒前
7秒前
XieQinxie完成签到,获得积分10
7秒前
慕青应助wanting采纳,获得10
8秒前
cong666完成签到,获得积分10
8秒前
zhihaiyu发布了新的文献求助20
8秒前
羊寄灵完成签到 ,获得积分10
8秒前
今后应助黎明采纳,获得10
8秒前
xl1990完成签到,获得积分10
8秒前
NexusExplorer应助hu采纳,获得30
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4473171
求助须知:如何正确求助?哪些是违规求助? 3932274
关于积分的说明 12199680
捐赠科研通 3586927
什么是DOI,文献DOI怎么找? 1971693
邀请新用户注册赠送积分活动 1009616
科研通“疑难数据库(出版商)”最低求助积分说明 903306