PHRF-RTDETR: a lightweight weed detection method for upland rice based on RT-DETR

杂草 计算机科学 杂草防治 块(置换群论) 农业工程 农学 数学 工程类 几何学 生物
作者
Xinglin Jin,Jinheng Zhang,Fei Wang,Meng Zhao,Yunshuang Wang,Jianping Yang,Jinfeng Wu,Bing Zhou
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:16
标识
DOI:10.3389/fpls.2025.1556275
摘要

Introduction Weed poses a greater threat to rice yield and quality in upland environments compared to paddy fields. Effective weed detection is a critical prerequisite for intelligent weed control technologies. However, the current weed detection methods for upland rice often struggle to achieve a balance between accuracy and lightweight design, significantly hindering the practical application and widespread adoption of intelligent weeding technologies in real-world agricultural scenarios. To address this issue, we enhanced the baseline model RT-DETR and proposed a lightweight weed detection model for upland rice, named PHRF-RTDETR. Methods First, we propose a novel lightweight backbone network, termed PGRNet, to replace the original computationally intensive feature extraction network in RT-DETR. Second, we integrate HiLo, a mechanism excluding parameter growth, into the AIFI module to enhance the model’s capability of capturing multi-frequency features. Furthermore, the RepC3 block is optimized by incorporating the RetBlock structure, resulting in RetC3, which effectively balances feature fusion and computational efficiency. Finally, the conventional GIoU loss is replaced with the Focaler-WIoUv3 loss function to significantly improve the model’s generalization performance. Results The experimental results show that PHRF-RTDETR achieves precision, recall, mAP50, and mAP50:95 scores of 92%, 85.6%, 88.2%, and 76.6%, respectively, with all metrics deviating by less than 1.7 percentage points from the baseline model in upland rice weed detection. In terms of lightweight indicators, PHRF-RTDETR achieved reductions in floating-point operations, parameter count, and model size by 59.3%, 53.7%, and 53.9%, respectively, compared to the baseline model. Compared with the traditional target detection models of Faster R-CNN and SSD, YOLO series models, and RT-DETR series models, the PHRF-RTDETR model effectively balances lightweight and accuracy performance for weed detection in upland rice. Discussion Overall, the PHRF-RTDETR model demonstrates potential for implementation in the detection modules of intelligent weeding robots for upland rice systems, offering dual benefits of reducing agricultural production costs through labor efficiency and contributing to improved food security in drought-prone regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达磬发布了新的文献求助10
1秒前
饱满的海蓝完成签到,获得积分10
1秒前
1秒前
浮游应助000采纳,获得10
1秒前
pzh发布了新的文献求助10
1秒前
karstbing发布了新的文献求助30
1秒前
1秒前
lily发布了新的文献求助10
2秒前
2秒前
anthea完成签到 ,获得积分10
2秒前
高泽乐完成签到,获得积分10
2秒前
李健应助jjj采纳,获得10
3秒前
小超发布了新的文献求助10
3秒前
缓慢安白完成签到,获得积分20
3秒前
a成发布了新的文献求助10
3秒前
zwhy发布了新的文献求助10
3秒前
无奈凡波完成签到,获得积分10
3秒前
Certainty橙子完成签到 ,获得积分10
4秒前
4秒前
5秒前
传奇3应助等待安柏采纳,获得10
5秒前
Ecokarster完成签到,获得积分10
5秒前
Wu圈圈发布了新的文献求助30
6秒前
6秒前
6秒前
6秒前
愉快草莓发布了新的文献求助10
6秒前
东山完成签到,获得积分20
7秒前
7秒前
D颖发布了新的文献求助10
8秒前
8秒前
77完成签到,获得积分10
8秒前
shi hui应助期待采纳,获得10
8秒前
8秒前
sunwin完成签到,获得积分10
9秒前
9秒前
000完成签到,获得积分10
10秒前
Lucas应助冰山泥采纳,获得10
10秒前
多情山蝶发布了新的文献求助10
10秒前
打打应助Sun采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260026
求助须知:如何正确求助?哪些是违规求助? 4421555
关于积分的说明 13763412
捐赠科研通 4295658
什么是DOI,文献DOI怎么找? 2356980
邀请新用户注册赠送积分活动 1353341
关于科研通互助平台的介绍 1314535