Fast capacity prediction of lithium-ion batteries using aging mechanism-informed bidirectional long short-term memory network

电池容量 电池(电) 稳健性(进化) 电压 计算机科学 锂离子电池 健康状况 机制(生物学) 模拟 控制理论(社会学) 人工智能 工程类 人工神经网络 电气工程 控制(管理) 物理 认识论 哲学 功率(物理) 基因 化学 量子力学 生物化学
作者
Xiaodong Xu,Shengjin Tang,Xuebing Han,Languang Lu,Yu Wu,Chuanqiang Yu,Xiaoyan Sun,Jian Xie,Xuning Feng,Minggao Ouyang
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:234: 109185-109185 被引量:37
标识
DOI:10.1016/j.ress.2023.109185
摘要

Accurate and robust capacity prediction is significant for battery management system to identify the state of health and life condition for lithium-ion batteries. This paper proposes a fast capacity prediction method by developing a novel deep aging mechanism-informed bidirectional long-short term memory (AM-Bi-LSTM) neural network. Firstly, a physical informed aging mechanism (AM) layer is established with the random charging curve sequences as input to identify the degradation features. Then the deep learning framework with two bidirectional long-short term memory (Bi-LSTM) layers is built to reflect the entire constant current charging curves and predict the battery capacity. In which, the battery aging mechanism is integrated into the artificial intelligence algorithm of capacity prediction for the first time. Several case studies are implemented to verify the effectiveness of developed method, and the influence of voltage window length on capacity prediction is further discussed. The results demonstrate that the charging curves can be accurately and fast captured with a capacity prediction root mean square error of less than 0.49% for 0.74 Ah batteries with 50 mV voltage window charging points collected in only less than 2.09 minutes mean cost time in the whole life cycle. It shows the proposed aging mechanism-informed data-driven prediction method has stronger robustness, faster prediction speed and higher accuracy compared with other data-driven methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒癌晚期完成签到,获得积分10
1秒前
tonight完成签到 ,获得积分0
1秒前
知非完成签到 ,获得积分10
1秒前
wenwenwang完成签到 ,获得积分10
1秒前
进退须臾完成签到,获得积分10
1秒前
wjswift完成签到,获得积分10
2秒前
尔尔完成签到 ,获得积分10
2秒前
蒲公英完成签到 ,获得积分10
3秒前
yellow完成签到,获得积分10
4秒前
const完成签到,获得积分10
5秒前
123完成签到 ,获得积分10
8秒前
辛勤谷雪完成签到,获得积分10
8秒前
尹冰露完成签到,获得积分10
8秒前
chenjzhuc应助叶叶采纳,获得30
9秒前
yifan92完成签到,获得积分10
10秒前
339564965完成签到,获得积分10
11秒前
wz完成签到,获得积分10
12秒前
万能图书馆应助wjswift采纳,获得10
13秒前
ccc完成签到,获得积分10
13秒前
ghy完成签到 ,获得积分10
13秒前
学习之人完成签到,获得积分0
14秒前
舒心的久完成签到 ,获得积分10
14秒前
徐涛完成签到 ,获得积分10
15秒前
倪小呆完成签到 ,获得积分10
16秒前
只想顺利毕业的科研狗完成签到,获得积分10
16秒前
17秒前
lucia5354完成签到,获得积分10
17秒前
TianFuAI完成签到,获得积分10
17秒前
研友_ZA2B68完成签到,获得积分10
18秒前
chenkj完成签到,获得积分10
18秒前
EricSai完成签到,获得积分10
18秒前
ikun完成签到,获得积分10
18秒前
义气天空完成签到,获得积分10
18秒前
平淡的寄风完成签到,获得积分10
19秒前
muxc完成签到,获得积分10
19秒前
19秒前
Ccccn完成签到,获得积分10
21秒前
执着的书蝶完成签到,获得积分10
21秒前
Helios完成签到,获得积分10
21秒前
21秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833955
求助须知:如何正确求助?哪些是违规求助? 3376373
关于积分的说明 10492814
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859