Cross-Class Bias Rectification for Point Cloud Few-Shot Segmentation

点云 计算机科学 特征(语言学) 分割 公制(单位) 特征向量 代表(政治) 人工智能 特征提取 模式识别(心理学) 集合(抽象数据类型) 过度拟合 数据挖掘 一般化 数学 数学分析 哲学 运营管理 语言学 政治 政治学 人工神经网络 法学 经济 程序设计语言
作者
Guanyu Zhu,Yong Zhou,Rui Yao,Hancheng Zhu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 9175-9188 被引量:6
标识
DOI:10.1109/tmm.2023.3248150
摘要

The point cloud is a densely distributed 3D (three-dimensional) data, and annotating the point cloud is a time-consuming and labor-intensive work. The existing semantics segmentation work adopts few-shot learning to reduce the dependence on labeling samples while improving the generalization of the model to new categories. Since point clouds are 3D structures with rich geometric features, even objects of the same category have feature differences that cannot be ignored. Therefore, a few samples (support set) used to train the model do not cover all the features of this category. There is a distribution difference between the support samples and the samples used to verify the model performance (query set). In this paper, we propose an efficient point cloud few-shot segmentation method based on prototypes for bias rectification. A prototype is a vector representation of a category in the metric space. To make the prototype representation of the support set closer to the query set features, we define a feature bias term and reduce the distribution distance between the two sets by fusing the support set features and the bias term. On this basis, we design a feature cross-reference module. By mining the co-occurring features of the support and query sets, it can generate a more representative prototype which captures the overall features of the point cloud. Extensive experiments on two challenging datasets demonstrate that our method outperforms the state-of-the-art method by an average of 3.31 $\%$ in several N-way K-shot tasks, and achieves approximately 200 times faster reasoning speed. Our code is available at https://github.com/964918993/2CBR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小饭发布了新的文献求助10
1秒前
星辰大海应助LELE采纳,获得10
2秒前
eggplant完成签到,获得积分10
2秒前
Orange应助45343采纳,获得10
9秒前
10秒前
11秒前
小饭完成签到,获得积分10
12秒前
科研通AI2S应助糯米糍采纳,获得10
12秒前
12345应助糯米糍采纳,获得10
13秒前
彭于晏应助糯米糍采纳,获得10
13秒前
14秒前
足球发布了新的文献求助10
14秒前
inter发布了新的文献求助10
15秒前
16秒前
淡然的新烟完成签到 ,获得积分10
18秒前
小蘑菇应助可可采纳,获得10
20秒前
bkagyin应助lineeeee采纳,获得10
23秒前
chentong完成签到 ,获得积分10
24秒前
25秒前
25秒前
inter完成签到,获得积分10
26秒前
30秒前
31秒前
31秒前
喝水吗完成签到,获得积分10
36秒前
37秒前
violet完成签到,获得积分10
38秒前
jenningseastera应助Raymond采纳,获得10
44秒前
pgmm完成签到,获得积分10
45秒前
lineeeee完成签到,获得积分20
45秒前
46秒前
46秒前
情怀应助xzy998采纳,获得10
47秒前
22完成签到 ,获得积分10
47秒前
51秒前
鱼在哪儿发布了新的文献求助10
52秒前
SciGPT应助羽翊采纳,获得10
54秒前
可可发布了新的文献求助10
55秒前
cij123完成签到,获得积分10
59秒前
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415