高原(数学)
材料科学
压力(语言学)
断层摄影术
计算机断层摄影术
金属泡沫
铝
X射线
压缩(物理)
复合材料
抗压强度
无损检测
质量保证
光学
物理
工程类
数学
放射科
哲学
数学分析
医学
量子力学
外部质量评估
语言学
运营管理
作者
Yoshihiko Hangai,So Ozawa,Kenji Okada,Yuuki Tanaka,Kenji Amagai,Ryosuke O. Suzuki
出处
期刊:Materials
[Multidisciplinary Digital Publishing Institute]
日期:2023-02-24
卷期号:16 (5): 1894-1894
被引量:7
摘要
Owing to its lightweight and excellent shock-absorbing properties, aluminum foam is used in automotive parts and construction materials. If a nondestructive quality assurance method can be established, the application of aluminum foam will be further expanded. In this study, we attempted to estimate the plateau stress of aluminum foam via machine learning (deep learning) using X-ray computed tomography (CT) images of aluminum foam. The plateau stresses estimated by machine learning and those actually obtained using the compression test were almost identical. Consequently, it was shown that plateau stress can be estimated by training using the two-dimensional cross-sectional images obtained nondestructively via X-ray CT imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI