Hi-gMISnet: generalized medical image segmentation using DWT based multilayer fusion and dual mode attention into high resolution pGAN

人工智能 计算机科学 分割 稳健性(进化) 深度学习 模式识别(心理学) 图像分割 概化理论 编码器 图像融合 计算机视觉 图像(数学) 数学 生物化学 化学 统计 基因 操作系统
作者
Tushar Talukder Showrav,Md. Kamrul Hasan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (11): 115019-115019
标识
DOI:10.1088/1361-6560/ad3cb3
摘要

Abstract Objective. Automatic medical image segmentation is crucial for accurately isolating target tissue areas in the image from background tissues, facilitating precise diagnoses and procedures. While the proliferation of publicly available clinical datasets led to the development of deep learning-based medical image segmentation methods, a generalized, accurate, robust, and reliable approach across diverse imaging modalities remains elusive. Approach. This paper proposes a novel high-resolution parallel generative adversarial network ( p GAN)-based generalized deep learning method for automatic segmentation of medical images from diverse imaging modalities. The proposed method showcases better performance and generalizability by incorporating novel components such as partial hybrid transfer learning, discrete wavelet transform (DWT)-based multilayer and multiresolution feature fusion in the encoder, and a dual mode attention gate in the decoder of the multi-resolution U-Net-based GAN. With multi-objective adversarial training loss functions including a unique reciprocal loss for enforcing cooperative learning in p GANs, it further enhances the robustness and accuracy of the segmentation map. Main results. Experimental evaluations conducted on nine diverse publicly available medical image segmentation datasets, including PhysioNet ICH, BUSI, CVC-ClinicDB, MoNuSeg, GLAS, ISIC-2018, DRIVE, Montgomery, and PROMISE12, demonstrate the proposed method’s superior performance. The proposed method achieves mean F1 scores of 79.53%, 88.68%, 82.50%, 93.25%, 90.40%, 94.19%, 81.65%, 98.48%, and 90.79%, respectively, on the above datasets, surpass state-of-the-art segmentation methods. Furthermore, our proposed method demonstrates robust multi-domain segmentation capabilities, exhibiting consistent and reliable performance. The assessment of the model’s proficiency in accurately identifying small details indicates that the high-resolution generalized medical image segmentation network (Hi- g MISnet) is more precise in segmenting even when the target area is very small. Significance. The proposed method provides robust and reliable segmentation performance on medical images, and thus it has the potential to be used in a clinical setting for the diagnosis of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Massback发布了新的文献求助10
3秒前
3秒前
3秒前
今后应助xiaoxin采纳,获得10
3秒前
玉1关注了科研通微信公众号
4秒前
桐桐应助黎少俊采纳,获得10
4秒前
鸭梨很大发布了新的文献求助10
4秒前
5秒前
6秒前
英俊的铭应助美丽荣轩采纳,获得50
6秒前
6秒前
Hz完成签到,获得积分10
6秒前
自信安荷完成签到,获得积分10
6秒前
神秘玩家完成签到,获得积分10
7秒前
7秒前
ddli发布了新的文献求助10
7秒前
Murphy发布了新的文献求助10
8秒前
张晓天发布了新的文献求助10
8秒前
YinchenChen发布了新的文献求助10
8秒前
关显锋发布了新的文献求助10
8秒前
爆米花应助Hz采纳,获得10
10秒前
11秒前
昭荃发布了新的文献求助10
12秒前
orixero应助潇洒雁梅采纳,获得10
13秒前
Dceer发布了新的文献求助10
13秒前
黎少俊完成签到,获得积分10
14秒前
14秒前
权志龙完成签到,获得积分10
14秒前
15秒前
fox完成签到 ,获得积分10
16秒前
科研助手6应助感动的念双采纳,获得10
17秒前
机智樱桃完成签到,获得积分10
17秒前
18秒前
JrPaleo101完成签到,获得积分10
19秒前
nnm发布了新的文献求助10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
Thien应助科研通管家采纳,获得10
20秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435