运动学
模式
均方误差
可穿戴计算机
力矩(物理)
膝关节
计算机科学
肌电图
外骨骼
物理医学与康复
接头(建筑物)
人工智能
一般化
模拟
数学
医学
工程类
统计
物理
经典力学
建筑工程
数学分析
社会科学
外科
社会学
嵌入式系统
作者
Keaton L. Scherpereel,Dean D. Molinaro,Max K. Shepherd,Omer T. Inan,Aaron J. Young
标识
DOI:10.1109/tbme.2024.3388874
摘要
Real-time measurement of biological joint moment could enhance clinical assessments and generalize exoskeleton control. Accessing joint moments outside clinical and laboratory settings requires harnessing non-invasive wearable sensor data for indirect estimation. Previous approaches have been primarily validated during cyclic tasks, such as walking, but these methods are likely limited when translating to non-cyclic tasks where the mapping from kinematics to moments is not unique.
科研通智能强力驱动
Strongly Powered by AbleSci AI