Improving diagnosis and outcome prediction of gastric cancer via multimodal learning using whole slide pathological images and gene expression

计算机科学 人工智能 机器学习 预测建模 深度学习 模式识别(心理学)
作者
Yuzhang Xie,Qingqing Sang,Qian Da,Guoshuai Niu,Shijie Deng,Haoran Feng,Yunqin Chen,Yuanyuan Li,Bingya Liu,Yang Yang,Wentao Dai
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:152: 102871-102871
标识
DOI:10.1016/j.artmed.2024.102871
摘要

For the diagnosis and outcome prediction of gastric cancer (GC), machine learning methods based on whole slide pathological images (WSIs) have shown promising performance and reduced the cost of manual analysis. Nevertheless, accurate prediction of GC outcome may rely on multiple modalities with complementary information, particularly gene expression data. Thus, there is a need to develop multimodal learning methods to enhance prediction performance. In this paper, we collect a dataset from Ruijin Hospital and propose a multimodal learning method for GC diagnosis and outcome prediction, called GaCaMML, which is featured by a cross-modal attention mechanism and Per-Slide training scheme. Additionally, we perform feature attribution analysis via integrated gradient (IG) to identify important input features. The proposed method improves prediction accuracy over the single-modal learning method on three tasks, i.e., survival prediction (by 4.9% on C-index), pathological stage classification (by 11.6% on accuracy), and lymph node classification (by 12.0% on accuracy). Especially, the Per-Slide strategy addresses the issue of a high WSI-to-patient ratio and leads to much better results compared with the Per-Person training scheme. For the interpretable analysis, we find that although WSIs dominate the prediction for most samples, there is still a substantial portion of samples whose prediction highly relies on gene expression information. This study demonstrates the great potential of multimodal learning in GC-related prediction tasks and investigates the contribution of WSIs and gene expression, respectively, which not only shows how the model makes a decision but also provides insights into the association between macroscopic pathological phenotypes and microscopic molecular features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
米糊发布了新的文献求助10
1秒前
2秒前
华仔应助navvv采纳,获得10
2秒前
大鹏发布了新的文献求助20
3秒前
5秒前
5秒前
华理附院孙文博完成签到 ,获得积分10
5秒前
tui发布了新的文献求助10
6秒前
7秒前
找找找文献完成签到,获得积分10
7秒前
江月年发布了新的文献求助10
8秒前
9秒前
晶晶发布了新的文献求助10
9秒前
chenlc971125完成签到 ,获得积分10
9秒前
sganthem完成签到,获得积分10
9秒前
学术废物发布了新的文献求助10
10秒前
zhangheng发布了新的文献求助20
10秒前
Bing完成签到,获得积分10
11秒前
卡卡完成签到 ,获得积分10
11秒前
欢呼的傲旋完成签到,获得积分10
11秒前
阿科完成签到,获得积分10
12秒前
14秒前
香蕉觅云应助MOMOJI采纳,获得10
15秒前
科研通AI5应助江月年采纳,获得10
15秒前
16秒前
16秒前
思源应助辛晓静采纳,获得10
17秒前
17秒前
小蘑菇应助tui采纳,获得10
18秒前
Jadon完成签到,获得积分10
18秒前
18秒前
19秒前
淡淡智宸发布了新的文献求助20
19秒前
20秒前
Harry发布了新的文献求助10
21秒前
星光发布了新的文献求助10
21秒前
戴上耳机去赶羊完成签到,获得积分10
21秒前
雨柏完成签到 ,获得积分10
21秒前
就这样发布了新的文献求助10
21秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821016
求助须知:如何正确求助?哪些是违规求助? 3363943
关于积分的说明 10426304
捐赠科研通 3082385
什么是DOI,文献DOI怎么找? 1695554
邀请新用户注册赠送积分活动 815190
科研通“疑难数据库(出版商)”最低求助积分说明 769034