Improving diagnosis and outcome prediction of gastric cancer via multimodal learning using whole slide pathological images and gene expression

计算机科学 人工智能 机器学习 预测建模 深度学习 模式识别(心理学)
作者
Yuzhang Xie,Qingqing Sang,Qian Da,Guoshuai Niu,Shijie Deng,Haoran Feng,Yunqin Chen,Yuanyuan Li,Bingya Liu,Yang Yang,Wentao Dai
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:152: 102871-102871 被引量:5
标识
DOI:10.1016/j.artmed.2024.102871
摘要

For the diagnosis and outcome prediction of gastric cancer (GC), machine learning methods based on whole slide pathological images (WSIs) have shown promising performance and reduced the cost of manual analysis. Nevertheless, accurate prediction of GC outcome may rely on multiple modalities with complementary information, particularly gene expression data. Thus, there is a need to develop multimodal learning methods to enhance prediction performance. In this paper, we collect a dataset from Ruijin Hospital and propose a multimodal learning method for GC diagnosis and outcome prediction, called GaCaMML, which is featured by a cross-modal attention mechanism and Per-Slide training scheme. Additionally, we perform feature attribution analysis via integrated gradient (IG) to identify important input features. The proposed method improves prediction accuracy over the single-modal learning method on three tasks, i.e., survival prediction (by 4.9% on C-index), pathological stage classification (by 11.6% on accuracy), and lymph node classification (by 12.0% on accuracy). Especially, the Per-Slide strategy addresses the issue of a high WSI-to-patient ratio and leads to much better results compared with the Per-Person training scheme. For the interpretable analysis, we find that although WSIs dominate the prediction for most samples, there is still a substantial portion of samples whose prediction highly relies on gene expression information. This study demonstrates the great potential of multimodal learning in GC-related prediction tasks and investigates the contribution of WSIs and gene expression, respectively, which not only shows how the model makes a decision but also provides insights into the association between macroscopic pathological phenotypes and microscopic molecular features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xin完成签到 ,获得积分20
2秒前
3秒前
优121212发布了新的文献求助10
4秒前
研友_8y2G0L完成签到,获得积分10
5秒前
9秒前
Akim应助杜梦婷采纳,获得10
10秒前
13秒前
15秒前
19秒前
彩色靖儿完成签到 ,获得积分10
19秒前
21秒前
21秒前
23秒前
清爽语柳发布了新的文献求助10
25秒前
FJ完成签到,获得积分10
25秒前
cordial完成签到,获得积分10
25秒前
善学以致用应助Ldq采纳,获得20
25秒前
kx发布了新的文献求助10
26秒前
CodeCraft应助幸福大白采纳,获得10
32秒前
科研通AI5应助幸福大白采纳,获得30
32秒前
SciGPT应助幸福大白采纳,获得20
32秒前
长歌完成签到,获得积分10
33秒前
ding应助StonesKing采纳,获得10
34秒前
搜集达人应助雨泽采纳,获得10
35秒前
汉堡包应助俊逸小蕾采纳,获得10
42秒前
我是老大应助lxz采纳,获得10
44秒前
浮游应助nono采纳,获得10
45秒前
桐桐应助SY采纳,获得10
46秒前
顾矜应助开朗鱼丸采纳,获得30
49秒前
50秒前
52秒前
kouryoufu完成签到,获得积分10
53秒前
乐乐应助研友_Lw7OvL采纳,获得10
54秒前
54秒前
wackykao完成签到 ,获得积分10
54秒前
54秒前
雨泽发布了新的文献求助10
55秒前
xzy998应助优121212采纳,获得10
56秒前
joxes发布了新的文献求助10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Development in Infancy 400
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4793452
求助须知:如何正确求助?哪些是违规求助? 4115485
关于积分的说明 12731929
捐赠科研通 3843761
什么是DOI,文献DOI怎么找? 2118734
邀请新用户注册赠送积分活动 1140867
关于科研通互助平台的介绍 1029334