亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimization on selecting XGBoost hyperparameters using meta‐learning

超参数 计算机科学 元学习(计算机科学) 机器学习 人工智能 管理 经济 任务(项目管理)
作者
Tiago Lima Marinho,Diego C. Nascimento,Bruno Almeida Pimentel
出处
期刊:Expert Systems [Wiley]
被引量:3
标识
DOI:10.1111/exsy.13611
摘要

Abstract With computational evolution, there has been a growth in the number of machine learning algorithms and they became more complex and robust. A greater challenge is upon faster and more practical ways to find hyperparameters that will set up each algorithm individually. This article aims to use meta‐learning as a practicable solution for recommending hyperparameters from similar datasets, through their meta‐features structures, than to adopt the already trained XGBoost parameters for a new database. This reduced computational costs and also aimed to make real‐time decision‐making feasible or reduce any extra costs for companies for new information. The experimental results, adopting 198 data sets, attested to the success of the heuristics application using meta‐learning to compare datasets structure analysis. Initially, a characterization of the datasets was performed by combining three groups of meta‐features (general, statistical, and info‐theory), so that there would be a way to compare the similarity between sets and, thus, apply meta‐learning to recommend the hyperparameters. Later, the appropriate number of sets to characterize the XGBoost turning was tested. The obtained results were promising, showing an improved performance in the accuracy of the XGBoost, k = {4 − 6}, using the average of the hyperparameters values and, comparing to the standard grid‐search hyperparameters set by default, it was obtained that, in 78.28% of the datasets, the meta‐learning methodology performed better. This study, therefore, shows that the adoption of meta‐learning is a competitive alternative to generalize the XGBoost model, expecting better statistics performance (accuracy etc.) rather than adjusting to a single/particular model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dream完成签到 ,获得积分10
2秒前
科研通AI5应助程雯慧采纳,获得10
29秒前
39秒前
程雯慧发布了新的文献求助10
43秒前
量子星尘发布了新的文献求助10
1分钟前
重要冰海完成签到,获得积分20
1分钟前
ding应助整齐的不评采纳,获得10
1分钟前
1分钟前
科研通AI5应助辛勤的背包采纳,获得10
1分钟前
1分钟前
1分钟前
vivy完成签到,获得积分10
1分钟前
vivy发布了新的文献求助10
1分钟前
qxy完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
qxy发布了新的文献求助10
1分钟前
1分钟前
整齐的不评完成签到,获得积分10
2分钟前
沉默寻凝完成签到,获得积分10
2分钟前
机灵自中完成签到,获得积分10
2分钟前
熊猫发布了新的文献求助20
3分钟前
3分钟前
熊猫发布了新的文献求助10
3分钟前
行走完成签到,获得积分10
3分钟前
熊猫完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
闪闪的梦柏完成签到 ,获得积分10
4分钟前
4分钟前
大个应助相龙采纳,获得10
4分钟前
4分钟前
4分钟前
cqhecq完成签到,获得积分10
4分钟前
相龙发布了新的文献求助10
4分钟前
4分钟前
科研通AI5应助早睡计划采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5053358
求助须知:如何正确求助?哪些是违规求助? 4280090
关于积分的说明 13340438
捐赠科研通 4095772
什么是DOI,文献DOI怎么找? 2241870
邀请新用户注册赠送积分活动 1248121
关于科研通互助平台的介绍 1177610