Optimization on selecting XGBoost hyperparameters using meta‐learning

超参数 计算机科学 元学习(计算机科学) 机器学习 人工智能 经济 管理 任务(项目管理)
作者
Tiago Lima Marinho,Diego C. Nascimento,Bruno Almeida Pimentel
出处
期刊:Expert Systems [Wiley]
被引量:3
标识
DOI:10.1111/exsy.13611
摘要

Abstract With computational evolution, there has been a growth in the number of machine learning algorithms and they became more complex and robust. A greater challenge is upon faster and more practical ways to find hyperparameters that will set up each algorithm individually. This article aims to use meta‐learning as a practicable solution for recommending hyperparameters from similar datasets, through their meta‐features structures, than to adopt the already trained XGBoost parameters for a new database. This reduced computational costs and also aimed to make real‐time decision‐making feasible or reduce any extra costs for companies for new information. The experimental results, adopting 198 data sets, attested to the success of the heuristics application using meta‐learning to compare datasets structure analysis. Initially, a characterization of the datasets was performed by combining three groups of meta‐features (general, statistical, and info‐theory), so that there would be a way to compare the similarity between sets and, thus, apply meta‐learning to recommend the hyperparameters. Later, the appropriate number of sets to characterize the XGBoost turning was tested. The obtained results were promising, showing an improved performance in the accuracy of the XGBoost, k = {4 − 6}, using the average of the hyperparameters values and, comparing to the standard grid‐search hyperparameters set by default, it was obtained that, in 78.28% of the datasets, the meta‐learning methodology performed better. This study, therefore, shows that the adoption of meta‐learning is a competitive alternative to generalize the XGBoost model, expecting better statistics performance (accuracy etc.) rather than adjusting to a single/particular model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bjx完成签到,获得积分10
2秒前
yar应助皓月采纳,获得10
2秒前
小马甲应助东北三省采纳,获得10
3秒前
Xuan_Y完成签到,获得积分10
3秒前
默默白桃完成签到 ,获得积分10
4秒前
西贝完成签到,获得积分10
4秒前
5秒前
yookia应助柚子采纳,获得10
5秒前
彭于彦祖应助ganjqly采纳,获得30
6秒前
666完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助150
7秒前
7秒前
8R60d8应助岛不言采纳,获得10
7秒前
流子完成签到,获得积分10
7秒前
星辰发布了新的文献求助10
8秒前
9秒前
10秒前
钟沐晨发布了新的文献求助10
10秒前
QQ完成签到 ,获得积分10
10秒前
Orange应助机灵的咖啡采纳,获得10
11秒前
KKLD发布了新的文献求助10
11秒前
和谐续发布了新的文献求助10
11秒前
Xx丶完成签到,获得积分10
11秒前
lxbu完成签到,获得积分10
11秒前
11秒前
13秒前
善学以致用应助Coco采纳,获得30
13秒前
皓月完成签到,获得积分10
13秒前
科目三应助言_缄采纳,获得10
14秒前
14秒前
东北三省发布了新的文献求助10
14秒前
小树苗发布了新的文献求助10
15秒前
Susan完成签到,获得积分10
17秒前
一丫发布了新的文献求助10
17秒前
18秒前
田様应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958299
求助须知:如何正确求助?哪些是违规求助? 3504528
关于积分的说明 11118735
捐赠科研通 3235777
什么是DOI,文献DOI怎么找? 1788506
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600