Strawberry disease detection using transfer learning of deep convolutional neural networks

学习迁移 卷积神经网络 深度学习 计算机科学 人工智能 园艺 生物
作者
Sijan Karki,Jayanta Kumar Basak,Niraj Tamrakar,Nibas Chandra Deb,Bhola Paudel,Jung Hoo Kook,Myeong Yong Kang,Dae Yeong Kang,Hyeon Tae Kim
出处
期刊:Scientia Horticulturae [Elsevier BV]
卷期号:332: 113241-113241 被引量:2
标识
DOI:10.1016/j.scienta.2024.113241
摘要

The impact of disease on strawberry quality and yield holds considerable significance, prompting researchers to explore effective methodologies for disease detection in strawberries. Among these, deep learning has emerged as a pivotal approach. In this regard, this research explored the utilization of transfer learning in deep convolutional neural networks (CNNs) to identify various strawberry diseases. Specifically, we utilized models pre-trained on the ImageNet dataset, namely VGG19, Inception V3, ResNet50, and DenseNet121 architectures, employing both fine-tuning and feature extraction techniques of transfer learning and consequently compared to the models without transfer learning. The target diseases for identification included angular leaf spot, anthracnose, gray mold, and powdery mildew on both fruit and leaves. The study outcomes revealed that Resnet-50 consistently achieved the highest accuracy across all three configurations, achieving its peak accuracy at 94.4 %, followed by Densenet-121 with an accuracy of 94.1 % attained through fine-tuning. These results highlighted the superior performance of fine-tuned models over using these models solely as feature extractors for identifying strawberry diseases. Furthermore, this study revealed that the application of transfer learning substantially reduced training time and resulted in a lower count of trainable parameters than models trained without transfer learning. These outcomes strongly endorse the practicality and effectiveness of employing transfer learning techniques for precise strawberry disease identification. Additionally, further research can explore the application of transfer learning to a broader range of crops and diseases, potentially enhancing agricultural disease detection methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风城完成签到,获得积分10
刚刚
Soir完成签到,获得积分10
2秒前
七七发布了新的文献求助10
3秒前
3秒前
lavine完成签到,获得积分10
4秒前
科研通AI5应助希伊翁采纳,获得10
5秒前
bc应助南宫封伦采纳,获得30
5秒前
Soir发布了新的文献求助10
5秒前
蕃薯叶给在你心上降落的求助进行了留言
6秒前
英俊的铭应助舍予采纳,获得40
7秒前
Cheryl完成签到,获得积分10
7秒前
从容芸发布了新的文献求助10
7秒前
xelloss完成签到,获得积分10
8秒前
zz完成签到 ,获得积分10
9秒前
10秒前
魔幻凡梅完成签到,获得积分10
12秒前
李爱国应助美好送终采纳,获得10
13秒前
研友_LjVvaL完成签到,获得积分10
13秒前
13秒前
给我个二硫碘化钾完成签到,获得积分10
13秒前
一一发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
heheha发布了新的文献求助10
17秒前
彭佳丽发布了新的文献求助10
18秒前
梧桐发布了新的文献求助10
22秒前
22秒前
土豆子发布了新的文献求助10
22秒前
星梦完成签到 ,获得积分10
24秒前
Ecrho完成签到,获得积分10
25秒前
万能图书馆应助义气凝阳采纳,获得10
26秒前
fragile完成签到,获得积分10
26秒前
hetao发布了新的文献求助10
27秒前
27秒前
28秒前
蕃薯叶应助mm采纳,获得10
29秒前
上官若男应助heheha采纳,获得10
29秒前
害羞飞双发布了新的文献求助10
31秒前
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812565
求助须知:如何正确求助?哪些是违规求助? 3357082
关于积分的说明 10385222
捐赠科研通 3074312
什么是DOI,文献DOI怎么找? 1688689
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986