Development and Validation of a Machine Learning–Based Model of Mortality Risk in First-Episode Psychosis

医学 危险系数 队列 心理干预 风险评估 接收机工作特性 人口学 比例危险模型 样本量测定 队列研究 置信区间 内科学 精神科 统计 计算机科学 计算机安全 数学 社会学
作者
Johannes Lieslehto,Jari Tiihonen,Markku Lähteenvuo,Stefan Leucht,Christoph U. Correll,Ellenor Mittendorfer‐Rutz,Antti O. Tanskanen,Heidi Taipale
出处
期刊:JAMA network open [American Medical Association]
卷期号:7 (3): e240640-e240640 被引量:1
标识
DOI:10.1001/jamanetworkopen.2024.0640
摘要

Importance There is an absence of mortality risk assessment tools in first-episode psychosis (FEP) that could enable personalized interventions. Objective To examine the feasibility of machine learning (ML) in discerning mortality risk in FEP and to assess whether such risk predictions can inform pharmacotherapy choices. Design, Setting, and Participants In this prognostic study, Swedish nationwide cohort data (from July 1, 2006, to December 31, 2021) were harnessed for model development and validation. Finnish cohort data (from January 1, 1998, to December 31, 2017) were used for external validation. Data analyses were completed between December 2022 and December 2023. Main Outcomes and Measures Fifty-one nationwide register variables, encompassing demographics and clinical and work-related histories, were subjected to ML to predict future mortality risk. The ML model’s performance was evaluated by calculating the area under the receiver operating characteristic curve (AUROC). The comparative effectiveness of pharmacotherapies in patients was assessed and was stratified by the ML model to those with predicted high mortality risk (vs low risk), using the between-individual hazard ratio (HR). The 5 most important variables were then identified and a model was retrained using these variables in the discovery sample. Results This study included 24 052 Swedish participants (20 000 in the discovery sample and 4052 in the validation sample) and 1490 Finnish participants (in the validation sample). Swedish participants had a mean (SD) age of 29.1 (8.1) years, 62.1% were men, and 418 died with 2 years. Finnish participants had a mean (SD) age of 29.7 (8.0) years, 61.7% were men, and 31 died within 2 years. The discovery sample achieved an AUROC of 0.71 (95% CI, 0.68-0.74) for 2-year mortality prediction. Using the 5 most important variables (ie, the top 10% [substance use comorbidities, first hospitalization duration due to FEP, male sex, prior somatic hospitalizations, and age]), the final model resulted in an AUROC of 0.70 (95% CI, 0.63-0.76) in the Swedish sample and 0.67 (95% CI, 0.56-0.78) in the Finnish sample. Individuals with predicted high mortality risk had an elevated 15-year risk in the Swedish sample (HR, 3.77 [95% CI, 2.92-4.88]) and an elevated 20-year risk in the Finnish sample (HR, 3.72 [95% CI, 2.67-5.18]). For those with predicted high mortality risk, long-acting injectable antipsychotics (HR, 0.45 [95% CI, 0.23-0.88]) and mood stabilizers (HR, 0.64 [95% CI, 0.46-0.90]) were associated with decreased mortality risk. Conversely, for those predicted to survive, only oral aripiprazole (HR, 0.38 [95% CI, 0.20-0.69]) and risperidone (HR, 0.38 [95% CI, 0.18-0.82]) were associated with decreased mortality risk. Conclusions and Relevance In this prognostic study, an ML-based model was developed and validated to predict mortality risk in FEP. These findings may help to develop personalized interventions to mitigate mortality risk in FEP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kepler发布了新的文献求助10
1秒前
cheng发布了新的文献求助30
1秒前
3秒前
小马甲应助lingchuan采纳,获得10
5秒前
zheng发布了新的文献求助10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
三叔应助科研通管家采纳,获得10
7秒前
Amo应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
君翊完成签到,获得积分10
9秒前
耸耸完成签到 ,获得积分10
11秒前
xia关闭了xia文献求助
12秒前
科研小狗完成签到 ,获得积分10
12秒前
浩二发布了新的文献求助10
13秒前
大个应助ZGYX采纳,获得10
13秒前
古月完成签到,获得积分10
15秒前
16秒前
蒙开心完成签到 ,获得积分10
18秒前
18秒前
学术小子完成签到 ,获得积分10
19秒前
比大家发布了新的文献求助10
22秒前
吴大打发布了新的文献求助10
24秒前
慕青应助虚幻花卷采纳,获得10
24秒前
刚少kk完成签到,获得积分10
27秒前
科研通AI5应助北风采纳,获得10
27秒前
脑洞疼应助哭泣朝雪采纳,获得10
29秒前
似风完成签到,获得积分10
30秒前
32秒前
香蕉觅云应助帅123采纳,获得10
32秒前
33秒前
无花果应助zheng采纳,获得30
35秒前
小巧的寻双完成签到,获得积分10
35秒前
沉默芸发布了新的文献求助10
36秒前
蛇虫鼠蚁发布了新的文献求助10
37秒前
39秒前
北风发布了新的文献求助10
39秒前
young应助傻傻的乌冬面采纳,获得10
39秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780078
求助须知:如何正确求助?哪些是违规求助? 3325423
关于积分的说明 10223034
捐赠科研通 3040585
什么是DOI,文献DOI怎么找? 1668935
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758614