DBW-YOLO: A High-Precision SAR Ship Detection Method for Complex Environments

计算机科学 合成孔径雷达 人工智能 特征(语言学) 边距(机器学习) 目标检测 特征提取 趋同(经济学) 计算机视觉 遥感 模式识别(心理学) 机器学习 地质学 哲学 语言学 经济 经济增长
作者
Xiao Tang,Jiufeng Zhang,Yunzhi Xia,H. L. Xiao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 7029-7039 被引量:9
标识
DOI:10.1109/jstars.2024.3376558
摘要

Synthetic aperture radar (SAR) is widely used for ship target detection with the application of deep learning techniques. However, in certain complex environments such as near shore or with small ships, the problem of false alarms and missed detections still exists. To address these issues, a high-precision ship target detection method named DBW-YOLO, which builds upon YOLOv7-tiny as its foundational network, is proposed in this paper. The proposed method consists of the following main steps. Firstly, a feature extraction enhancement network based on deformable convolution network (DCNet) is introduced to obtain more comprehensive feature representations across various ship types. Secondly, an adaptive feature recognition method based on BiFormer attention mechanism is proposed to strengthen detection accuracy, which is more beneficial to capture near shore ships and small ships. Thirdly, a Wise Intersection-over-Union (Wise IoU) based on dynamic non-monotonic focusing mechanism is proposed to generate the loss function, which improves the convergence speed and generalization ability. Consequently, the DBW-YOLO method trains a more robust model that better utilizes samples from near shore and small ships. To verify the effectiveness of this method, two SAR datasets, HRSID and SSDD, are employed for performance evaluation. Compared to other widely-used methods, the mAP value of DBW-YOLO reachs 88.84% and 99.18% on the HRSID and SSDD datasets, respectively. The findings indicate that DBW-YOLO method outperforms other representative SAR ship detection methods in both accuracy and overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
feitian201861完成签到,获得积分10
1秒前
复杂的可乐完成签到 ,获得积分10
1秒前
Yingling应助科研通管家采纳,获得10
1秒前
FelixChen应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
FelixChen应助科研通管家采纳,获得10
2秒前
彭于彦祖应助科研通管家采纳,获得20
2秒前
FelixChen应助科研通管家采纳,获得10
2秒前
2秒前
领导范儿应助活泼山雁采纳,获得30
2秒前
不吃香菜完成签到,获得积分10
2秒前
五月完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
6秒前
10秒前
10秒前
干净的夜蓉完成签到,获得积分10
11秒前
泽佳发布了新的文献求助10
11秒前
TheaGao完成签到 ,获得积分10
12秒前
huahua完成签到 ,获得积分10
12秒前
武雨寒发布了新的文献求助10
14秒前
17秒前
赵世璧完成签到,获得积分10
19秒前
泽佳完成签到,获得积分20
19秒前
整化学发布了新的文献求助10
19秒前
欧皇发布了新的文献求助10
21秒前
爱科研的小胖子完成签到,获得积分10
25秒前
25秒前
彭于晏应助欧皇采纳,获得10
26秒前
充电宝应助整化学采纳,获得10
26秒前
Star1983完成签到,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864066
求助须知:如何正确求助?哪些是违规求助? 3406339
关于积分的说明 10649308
捐赠科研通 3130285
什么是DOI,文献DOI怎么找? 1726364
邀请新用户注册赠送积分活动 831635
科研通“疑难数据库(出版商)”最低求助积分说明 779990