A novel approach in forecasting compressive strength of concrete with carbon nanotubes as nanomaterials

胶凝的 材料科学 抗压强度 碳纳米管 决策树 人工神经网络 多层感知器 支持向量机 机器学习 Boosting(机器学习) 气凝胶 计算机科学 人工智能 水泥 纳米技术 复合材料
作者
Hongbo Jiao,Yonggang Wang,Lielie Li,Kiran Arif,Furqan Farooq,Abdulaziz A. Al–Askar
出处
期刊:Materials today communications [Elsevier]
卷期号:35: 106335-106335 被引量:34
标识
DOI:10.1016/j.mtcomm.2023.106335
摘要

The evolution of nanotechnology in cementitious concrete can be used to enhance the mechanical behavior of concrete and other materials. Thus, the utilization of carbon nanotubes (CNTs) in the concrete cementitious industry will deliver important remedial measures for generating an eco-friendly environment with multifunctional properties. In addition, planning and conducting experimental tests for different samples and testing at varying ages is laborious, time taking and expensive. Consequently, the prediction model looks necessary. Because of the complex nature of contemporary construction materials, empirical and statistical approaches do not work well for such materials; thus, machine learning approaches were utilized for this study. Thus, the process of forecasting concrete strength (CS) can be accelerated by employing soft machine learning (ML) techniques. Moreover, the ensemble of the models is also done for an accurate estimation of the CS with the Python Jupyter Notebook. Decision tree (DT), multilayer perceptron neuron network (MLPNN), and support vector machine (SVM) were utilized as individual approaches. These individual ML models then ensemble with two approaches namely bagging and boosting with twenty sub models. The outcome of the model depicts a robust performance by showing significant correlations (R2) as compared to individual ML. Data points with 282 having contribution factors (e.g., curing (days), cement (kg/m3), water to binder (w/b), fine aggregate (kg/m3), nanomaterial as carbon nanotubes (%), coarse aggregate (kg/m3), and CS were used as input parameters for ML modeling. To ensure that each model is as accurate as possible, cross-validation (CV) with K-folding and statistical error analysis (i.e., MAE, MAE, and RMSE) was utilized. The result reveals that the ensemble algorithm with bagging and boosting give robust correlation R2 ranging from 0.9 to 0.95. Moreover, DT with Ada-boost yields a strong R2 of about 0.93. Similarly, ensemble model of SVM and MLPNN with boosting depicts R2 = 0.93 and 0.94 respectively. K-fold cross-validation confirms the model’s accuracy with minimal statistical error. Also, statistical checks reveal that the ensemble model provides an increase in the overall performance by showing minimal error as compared to standalone method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助juqiu采纳,获得10
刚刚
1秒前
钙离子发布了新的文献求助10
1秒前
深情安青应助大方大船采纳,获得10
2秒前
Dr.Ye完成签到 ,获得积分10
3秒前
研友_ZG4ml8发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
Orange应助YK采纳,获得10
5秒前
6秒前
刘尚韬完成签到,获得积分10
6秒前
小蘑菇应助11采纳,获得10
9秒前
kingwill应助哭泣依秋采纳,获得60
9秒前
自信的德天完成签到,获得积分10
10秒前
热心傲珊发布了新的文献求助10
11秒前
今后应助漂亮幻莲采纳,获得10
12秒前
小蘑菇应助出门见喜采纳,获得10
13秒前
笑靥如花发布了新的文献求助10
14秒前
古猫宁发布了新的文献求助10
15秒前
jianghs完成签到,获得积分10
16秒前
17秒前
猪蹄完成签到,获得积分10
17秒前
Orange应助老卜素采纳,获得10
18秒前
不二完成签到 ,获得积分10
18秒前
叶先生完成签到 ,获得积分10
18秒前
MoodMeed发布了新的文献求助10
18秒前
19秒前
笑靥如花完成签到,获得积分10
21秒前
21秒前
大方大船发布了新的文献求助10
22秒前
22秒前
SciGPT应助寒冷以蓝采纳,获得10
22秒前
24秒前
24秒前
科研通AI6应助张平安采纳,获得10
25秒前
伊绵好完成签到,获得积分10
25秒前
26秒前
天天快乐应助钙离子采纳,获得10
26秒前
ML应助寒冷书雪采纳,获得10
26秒前
YK发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533589
求助须知:如何正确求助?哪些是违规求助? 4621770
关于积分的说明 14580400
捐赠科研通 4561935
什么是DOI,文献DOI怎么找? 2499712
邀请新用户注册赠送积分活动 1479417
关于科研通互助平台的介绍 1450600