亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Temporal Perceiver: A General Architecture for Arbitrary Boundary Detection

计算机科学 建筑 人工智能 边界(拓扑) 理论计算机科学 计算机视觉 模式识别(心理学) 数学 艺术 数学分析 视觉艺术
作者
Jing Tan,Yuhong Wang,Gangshan Wu,Limin Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (10): 12506-12520 被引量:8
标识
DOI:10.1109/tpami.2023.3283067
摘要

Generic Boundary Detection (GBD) aims at locating the general boundaries that divide videos into semantically coherent and taxonomy-free units, and could serve as an important pre-processing step for long-form video understanding. Previous works often separately handle these different types of generic boundaries with specific designs of deep networks from simple CNN to LSTM. Instead, in this paper, we present Temporal Perceiver , a general architecture with Transformer, offering a unified solution to the detection of arbitrary generic boundaries, ranging from shot-level, event-level, to scene-level GBDs. The core design is to introduce a small set of latent feature queries as anchors to compress the redundant video input into a fixed dimension via cross-attention blocks. Thanks to this fixed number of latent units, it greatly reduces the quadratic complexity of attention operation to a linear form of input frames. Specifically, to explicitly leverage the temporal structure of videos, we construct two types of latent feature queries: boundary queries and context queries, which handle the semantic incoherence and coherence accordingly. Moreover, to guide the learning of latent feature queries, we propose an alignment loss on the cross-attention maps to explicitly encourage the boundary queries to attend on the top boundary candidates. Finally, we present a sparse detection head on the compressed representation, and directly output the final boundary detection results without any post-processing module. We test our Temporal Perceiver on a variety of GBD benchmarks. Our method obtains the state-of-the-art results on all benchmarks with RGB single-stream features: SoccerNet-v2 (81.9 percent average-mAP), Kinetics-GEBD (86.0 percent average-f1), TAPOS (73.2 percent average-f1), MovieScenes (51.9 percent AP and 53.1 percent $M_{iou}$ ) and MovieNet (53.3 percent AP and 53.2 percent $M_{iou}$ ), demonstrating the generalization ability of our Temporal Perceiver. To further pursue a general GBD model, we combined various tasks to train a class-agnostic Temporal perceiver and evaluate its performance across all benchmarks. Results show that the class-agnostic Perceiver achieves comparable detection accuracy and even better generalization ability compared to dataset-specific Temporal Perceiver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
9秒前
chiyu完成签到,获得积分10
28秒前
1分钟前
展正希发布了新的文献求助30
1分钟前
SiO2完成签到,获得积分10
1分钟前
kdjm688完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
alex_zhao完成签到,获得积分10
2分钟前
展正希完成签到,获得积分10
2分钟前
2分钟前
月儿完成签到 ,获得积分10
2分钟前
mathmotive完成签到,获得积分10
3分钟前
Demi_Ming发布了新的文献求助80
3分钟前
李爱国应助科研通管家采纳,获得10
4分钟前
从容芮完成签到,获得积分0
4分钟前
Demi_Ming发布了新的文献求助80
5分钟前
6分钟前
manson发布了新的文献求助30
6分钟前
研友_VZG7GZ应助Demi_Ming采纳,获得10
6分钟前
nickel完成签到,获得积分10
6分钟前
Owen应助玩命的熊猫采纳,获得10
6分钟前
fhw完成签到 ,获得积分10
6分钟前
jjwen完成签到 ,获得积分10
6分钟前
绿色心情完成签到 ,获得积分10
6分钟前
CJW完成签到 ,获得积分10
7分钟前
7分钟前
金鱼咕噜噜luu完成签到,获得积分10
7分钟前
Demi_Ming发布了新的文献求助10
7分钟前
慕青应助阿司匹林采纳,获得10
7分钟前
KeYXB完成签到,获得积分10
7分钟前
Akim应助ektyz采纳,获得10
7分钟前
牛八先生完成签到,获得积分10
7分钟前
7分钟前
光合作用完成签到,获得积分10
7分钟前
阿司匹林发布了新的文献求助10
7分钟前
鬼见愁应助科研通管家采纳,获得10
8分钟前
8分钟前
poki完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4190708
求助须知:如何正确求助?哪些是违规求助? 3726653
关于积分的说明 11738756
捐赠科研通 3402693
什么是DOI,文献DOI怎么找? 1867178
邀请新用户注册赠送积分活动 923836
科研通“疑难数据库(出版商)”最低求助积分说明 834911