High-performance aqueous zinc ion hybrid capacitors obtained by Na2SO4additive and dense pore structure

水溶液 吸附 电解质 电化学 材料科学 离子 无机化学 电极 化学工程 冶金 化学 物理化学 有机化学 工程类
作者
Mingjun Zou,Xixian Li,Siyu Luo,Junda Chen,Mengqi Hou,Ge Gao
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:15 (27): 11681-11692 被引量:7
标识
DOI:10.1039/d3nr01178j
摘要

In this study, the electrochemical performance of zinc ion hybrid capacitors (ZICs) was improved by employing carbon-based materials and electrolyte together. First, we prepared pitch-based porous carbon HC-800 as the electrode material, which possessed a large specific surface area (3607 m2 g-1) and a dense pore structure. This provided abundant adsorption sites for zinc ions, and thus stored more charges. Subsequently, 0.5 M Na2SO4 was added to 1 M Zn(CF3SO3)2 electrolyte via the cationic additive strategy, and the adsorption energy of sodium and zinc ions on the zinc electrode was calculated. The results showed that sodium ions would preferentially be adsorbed on the surface of the zinc electrode, which would inhibit the growth of zinc dendrites, and thus prolong the service life of the zinc electrode. Finally, the presence of solvated zinc ions in the narrowly distributed pores of HC-800 was studied, and the results showed that Zn(H2O)62+ underwent a desolvation process, resulting in the removal of two water molecules to form a tetrahedral structure of Zn(H2O)42+, which made the central surface of the zinc ions closer to the surface of HC-800, and thus the more capacitance achieved. Furthermore, the uniform distribution of Zn(H2O)42+ in the dense and neat pores of HC-800, improved the space charge density. Consequently, the assembled ZIC exhibited a high capacity (242.25 mA h g-1 at 0.5 A g-1) and ultra-long cycle stability (capacity retention at 87% after 110 000 charge/discharge cycles at a high current density of 50 A g-1 and a coulombic efficiency of 100%) and an energy density of 186.1 W h kg-1 and power density of 41 004 W kg-1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
没有你不行完成签到,获得积分10
1秒前
彭于晏应助清新的音响采纳,获得10
1秒前
3秒前
提拉敏苏发布了新的文献求助30
3秒前
SciGPT应助CYY采纳,获得10
4秒前
4秒前
5秒前
Ssmall发布了新的文献求助10
6秒前
7秒前
8秒前
timo发布了新的文献求助10
10秒前
11秒前
11秒前
13秒前
完美世界应助隐形的傲易采纳,获得10
16秒前
情怀应助Rao采纳,获得10
16秒前
科研通AI5应助菜鸡5号采纳,获得10
16秒前
17秒前
是小明啦发布了新的文献求助10
17秒前
19秒前
CLN完成签到,获得积分10
21秒前
23秒前
爆米花应助timo采纳,获得10
23秒前
Liu发布了新的文献求助10
25秒前
25秒前
完美世界应助w934420513采纳,获得10
25秒前
26秒前
Gzdaigzn完成签到,获得积分10
26秒前
SCI完成签到,获得积分10
27秒前
郁奥古发布了新的文献求助10
28秒前
28秒前
29秒前
晓巨人发布了新的文献求助10
29秒前
杨少博发布了新的文献求助10
30秒前
30秒前
SWEETYXY发布了新的文献求助10
33秒前
SciGPT应助TIGun采纳,获得10
33秒前
幻梦发布了新的文献求助10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358