Does CMIP6 inspire more confidence in projecting precipitation over China?

耦合模型比对项目 降水 气候学 环境科学 缩小尺度 气候模式 中国 大气科学 气候变化 气象学 地质学 地理 海洋学 考古
作者
Jiaxi Tian,Zengxin Zhang,Yuanhai Fu,Hui Tao,Bin Zhu,Yang Liu
出处
期刊:International Journal of Climatology [Wiley]
卷期号:43 (11): 4965-4986
标识
DOI:10.1002/joc.8127
摘要

Abstract Despite significant advancements in recent versions of general circulation models (GCMs), uncertainties persist in simulations of both historical and future precipitation. Notably, disparities exist between the simulated precipitation before 2015 and the projected precipitation in Coupled Model Intercomparison Project Phase 6 (CMIP6) models. In this study, the accuracy of projected precipitation in 12 CMIP6 models was evaluated before and after applying SD and EDCDFm methods, by comparing with observed precipitation data during 2015–2020. This study aims to address the gap in the comprehensive evaluation of projected precipitation against observational data. The results of the study showed that: (1) Downscaling and bias correction improved the skill of CMIP6 models in simulating spatial distribution of precipitation during 1961–2014, especially in east China. However, bias‐corrected projected precipitation during 2015–2020 exhibited a dry bias over most of China. (2) Bias correction improved the capability of CMIP6 models in simulating historical monthly variations in precipitation, but did not address the issue of projected precipitation following the simulated seasonal cycles. (3) The improvement of projected precipitation after bias correction was limited during 2015–2020, and for CanESM5, IPSL‐CM6A‐LR, and MIROC6 models, bias correction even exacerbated the bias of projected precipitation over the Song–Liao River, Yangtze River, and Southeast River basins. (4) Bias‐corrected CMIP6 models generally underestimated the increase in precipitation after 2015, but projected precipitation over China was still expected to increase during 2015–2099 after bias correction. These findings emphasize the need for more precise strategic suggestions to improve the projection of precipitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴富发布了新的文献求助10
1秒前
2秒前
科研通AI5应助Wangyingjie5采纳,获得10
4秒前
托伐普坦完成签到,获得积分10
4秒前
桐桐应助文艺的紫萍采纳,获得10
5秒前
999999发布了新的文献求助20
7秒前
残幻应助乐观的忆枫采纳,获得10
7秒前
ohh完成签到,获得积分10
8秒前
huoguo应助idynamics采纳,获得10
8秒前
9秒前
Sally完成签到,获得积分10
10秒前
11秒前
guo完成签到 ,获得积分10
12秒前
ZSXL发布了新的文献求助10
16秒前
one发布了新的文献求助10
17秒前
叶九幽完成签到,获得积分10
18秒前
Skuld应助ohh采纳,获得30
20秒前
20秒前
22秒前
cis2014发布了新的文献求助10
24秒前
黄金蛋饺完成签到,获得积分10
24秒前
王单阳完成签到,获得积分10
25秒前
知了发布了新的文献求助10
26秒前
geyahe发布了新的文献求助10
26秒前
he发布了新的文献求助10
27秒前
洪东智完成签到,获得积分10
32秒前
12发布了新的文献求助10
33秒前
科研通AI5应助Prime采纳,获得10
33秒前
zhou完成签到,获得积分10
36秒前
37秒前
优秀送终完成签到,获得积分10
37秒前
39秒前
bkagyin应助科研通管家采纳,获得10
39秒前
ZhouYW应助科研通管家采纳,获得10
39秒前
搜集达人应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
所所应助科研通管家采纳,获得10
39秒前
大个应助科研通管家采纳,获得30
39秒前
元锦程发布了新的文献求助10
39秒前
daisy应助科研通管家采纳,获得10
39秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798061
求助须知:如何正确求助?哪些是违规求助? 3343561
关于积分的说明 10316564
捐赠科研通 3060257
什么是DOI,文献DOI怎么找? 1679407
邀请新用户注册赠送积分活动 806560
科研通“疑难数据库(出版商)”最低求助积分说明 763244