Computational fluid dynamics−discrete element method simulation and experimental study of particle transport mechanism in a centrifugal pump

物理 离散元法 离心泵 机制(生物学) 机械 计算流体力学 动力学(音乐) 流体力学 离心力 CFD-DEM公司 经典力学 统计物理学 流量(数学) 叶轮 量子力学 声学
作者
Zhenjiang Zhao,Ling Bai,Xianghui Su,Jie Chen,Bing Qu,Ling Zhou
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (2)
标识
DOI:10.1063/5.0256782
摘要

Pumps are one of the most important equipment in deep-sea mining system, which transport particles continuously from the seafloor. In this paper, the computational fluid dynamics−discrete element method (CFD−DEM) numerical simulation was used to analyze the effect of particle volume fraction (PVF) on the particle transport mechanism in the pump. The reliability of the CFD−DEM numerical simulation was verified by high-speed photography experiments. The results show that the particles mainly move along the blade pressure surface (BPS) in the impeller, and the particles can suppress the formation of low-velocity vortices on the BPS. The translational velocity of the particles is less affected by the PVF, but has a significant effect on the rotational velocity. The flow pattern of particles inside the volute is categorized into wake flow, cutting flow, and near wall flow. With the increase in PVF, the particles are subjected to pressure gradient force, drag force, and virtual mass force in the pump gradually increase, but the lift force on the particles gradually decreases. The tangential force and normal force between particles increased with increasing PVF, and the increase in PVF from 2% to 10% was 462.55% and 148.17%, respectively. The collision frequency per unit time of particles with volute is the largest, but the collision frequency per unit time and per unit area is the largest for impeller. The most significant impact work of particles with volute and particles with blades is 371.08% and 505.66% when PVF increases from 2% to 10%. This study can provide theoretical guidance for the optimal design of solid−liquid two-phase pumps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海城好人完成签到,获得积分10
3秒前
7秒前
起起完成签到 ,获得积分10
12秒前
牧谷完成签到 ,获得积分10
12秒前
跳跃的不二完成签到 ,获得积分10
13秒前
小明发布了新的文献求助10
13秒前
lizombie完成签到,获得积分10
17秒前
思源应助小草莓采纳,获得10
19秒前
25秒前
happyccch完成签到,获得积分10
26秒前
28秒前
小草莓发布了新的文献求助10
33秒前
乐观的莆完成签到,获得积分10
33秒前
小黄完成签到 ,获得积分10
33秒前
晓驿完成签到,获得积分10
35秒前
温壹应助科研通管家采纳,获得10
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
田様应助科研通管家采纳,获得10
39秒前
41秒前
你听得到发布了新的文献求助30
48秒前
50秒前
愤怒的千凝完成签到 ,获得积分10
50秒前
清脆如娆完成签到 ,获得积分10
50秒前
52秒前
53秒前
Kiki完成签到,获得积分10
54秒前
小草莓完成签到,获得积分20
54秒前
56秒前
辰一完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
Yu完成签到,获得积分10
1分钟前
1分钟前
星辰发布了新的文献求助10
1分钟前
加油干完成签到 ,获得积分10
1分钟前
满意外套完成签到,获得积分10
1分钟前
严冰蝶完成签到 ,获得积分10
1分钟前
科研通AI2S应助星辰采纳,获得10
1分钟前
深情安青应助高兴山柏采纳,获得10
1分钟前
怕孤单的钥匙完成签到,获得积分20
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776406
求助须知:如何正确求助?哪些是违规求助? 3321809
关于积分的说明 10207935
捐赠科研通 3037143
什么是DOI,文献DOI怎么找? 1666560
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757872