Combining Ultrasound Imaging and Molecular Testing in a Multimodal Deep Learning Model for Risk Stratification of Indeterminate Thyroid Nodules

不确定 危险分层 甲状腺结节 超声波 医学 放射科 分子成像 甲状腺 病理 人工智能 内科学 计算机科学 生物 数学 生物技术 纯数学 体内
作者
Shreeram Athreya,Andrew Melehy,Sujit Silas Armstrong Suthahar,Vedrana Ivezić,Ashwath Radhachandran,Vivek Sant,Chace Moleta,Henry Zheng,Maitraya Patel,Rinat Masamed,Masha J. Livhits,Michael Yeh,Corey Arnold,William Speier
出处
期刊:Thyroid [Mary Ann Liebert]
卷期号:35 (5): 590-594 被引量:2
标识
DOI:10.1089/thy.2024.0584
摘要

Objective: Indeterminate cytology (Bethesda III and IV) represents 15-30% of biopsied thyroid nodules and require additional diagnostic testing. Molecular testing (MT) is a commonly used diagnostic tool that evaluatesmalignancy risk through next generation sequencing of fine needle aspiration (FNA) samples. While MT achieves high sensitivity (97-100%) in ruling out malignancy, its specificity and positive predictive value (PPV) remain relatively low. This study proposes a multimodal deep learning model that integrates ultrasound (US) imaging with MT to improve risk stratification by enhancing PPV while maintaining high sensitivity. Combining these modalities leverages complementary information from both molecular and imaging data, addressing limitations in current approaches and offering a robust framework for evaluating indeterminate nodules. Methods: We retrospectively analyzed 333 patients with indeterminate thyroid nodules (259 benign, 74 malignant) at UCLA Medical Center between 2016 and 2022. We evaluated four configurations: whole frame US images, 256 × 256 patches, 128 × 128 patches, and an ensemble model combining the first three configurations. The clinical baseline consisted of Bethesda cytology and MT results. Models were assessed using five fold cross validation stratified by surgical outcomes. Results: The clinical baseline (Bethesda + MT) achieved an AUROC of 0.728 [0.68, 0.78] with sensitivity of 0.946 [0.88, 1.00], specificity of 0.664 [0.60, 0.73], and PPV of 0.448 [0.41, 0.48]. The proposed ensemble model demonstrated improved performance, achieving an AUROC of 0.831 [0.77, 0.89] with a sensitivity of 0.946 [0.88, 1.00], specificity of 0.703 [0.66, 0.75], and PPV of 0.477 [0.46, 0.50]. These improvements were statistically significant (p = 0.0008). Conclusion: Our multimodal model enhances MT performance by providing statistically significant improvements in PPV and specificity while maintaining high sensitivity. Our framework could be leveraged to reduce the number of benign thyroid resections in patients with indeterminate nodules. However, this study is limited by its single center dataset, lack of external validation, and the use of binarized MT outputs rather than granular malignancy risk probabilities. Future work should validate these findings across diverse populations and larger external datasets for more comprehensive risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
闫鹤文发布了新的文献求助10
2秒前
2秒前
2秒前
吃点红糖馒头完成签到,获得积分10
3秒前
4秒前
zhang发布了新的文献求助10
4秒前
小乐发布了新的文献求助10
6秒前
白菜也挺贵完成签到,获得积分10
6秒前
Sue完成签到 ,获得积分10
6秒前
刘小蕊发布了新的文献求助20
6秒前
6秒前
坚强千筹发布了新的文献求助10
6秒前
三十三发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
9秒前
落锦不落花关注了科研通微信公众号
10秒前
11秒前
初识发布了新的文献求助10
11秒前
chrisio应助闫鹤文采纳,获得10
12秒前
13秒前
MM发布了新的文献求助10
14秒前
14秒前
15秒前
董亦菲完成签到 ,获得积分10
16秒前
忧虑的凛完成签到,获得积分10
16秒前
17秒前
渴望者发布了新的文献求助10
17秒前
21秒前
mcy01完成签到,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
Calcifer发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533604
求助须知:如何正确求助?哪些是违规求助? 4621800
关于积分的说明 14580508
捐赠科研通 4561985
什么是DOI,文献DOI怎么找? 2499748
邀请新用户注册赠送积分活动 1479481
关于科研通互助平台的介绍 1450600