亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evolutionary Synthesis of High-Capacity Reconfigurable Multilayer Road Networks Using a Multiagent Hybrid Clustering-Assisted Genetic Algorithm

聚类分析 计算机科学 遗传算法 进化算法 算法 人工智能 机器学习
作者
Акопов Андраник Сумбатович,L. A. Beklaryan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:13: 53448-53474 被引量:20
标识
DOI:10.1109/access.2025.3554054
摘要

Modern requirements for urban traffic management and control call for the design of high-capacity reconfigurable multilayer road networks (RMRNs). This paper discusses the proposed evolutionary synthesis approach, a promising method for finding the best configurations of RMRNs, aiming to create road networks with optimized layouts that maximize vehicle outflow. As the complexity of RMRNs increases, due to the addition of overpasses and tunnels, the expenses for building these road networks also rise significantly. Therefore, it is essential to find a balance when choosing the optimal topological solution for an RMRN. These solutions need to maximize traffic flow while minimizing the complexity of the RMRN. To achieve this goal, a new multiagent hybrid clustering-assisted genetic algorithm (MA-HCAGA). The proposed algorithm combines the use of binary-coded crossovers and mutations as genetic operators, and biobjective discrete particle swarm optimization (BODPSO) techniques to improve the evolutionary search process. In addition, the algorithm combines the use of finite-state machines (FSMs) to control the transitions between the states of agent-processes and the fuzzy clustering technique (FCA) to estimate the swarm and select clusters for interaction among the groups of agent-processes and particle swarms. The superior performance of the MA-HCAGA algorithm in evolutionary synthesis of RMRNs has been demonstrated through comparisons with other well-known multiobjective optimization methods. MA-HCAGA has been successfully applied in the evolutionary synthesis of RMRNs, allowing a decision maker to select the optimal RMRN topologies along the approximate Pareto front by selecting specific solutions. A traffic flow simulation model, aggregated with the MA-HCAGA algorithm, has been developed to simulate vehicle flow at various configurations of RMRNs. The results of this study show the effectiveness of the proposed method for configuring RMRNs in order to optimize vehicle outflow and reduce the complexity of RMRNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
15秒前
斯通纳完成签到 ,获得积分10
16秒前
灵巧的嚣完成签到,获得积分10
17秒前
二丙发布了新的文献求助10
18秒前
23秒前
23秒前
巨型肥猫完成签到,获得积分10
25秒前
巨型肥猫发布了新的文献求助10
28秒前
30秒前
30秒前
科研通AI5应助gzl采纳,获得150
30秒前
guangshuang完成签到 ,获得积分10
34秒前
xy发布了新的文献求助10
35秒前
yqt发布了新的文献求助10
41秒前
49秒前
49秒前
wgm发布了新的文献求助10
53秒前
渥鸡蛋完成签到,获得积分10
53秒前
蕴蝶发布了新的文献求助10
55秒前
默默善愁发布了新的文献求助10
57秒前
香蕉觅云应助xy采纳,获得10
1分钟前
酷波er应助蕴蝶采纳,获得10
1分钟前
科研通AI6应助默默善愁采纳,获得10
1分钟前
田様应助默默善愁采纳,获得10
1分钟前
zheng完成签到 ,获得积分10
1分钟前
1分钟前
时间管理啊鲲完成签到,获得积分10
1分钟前
tsttst完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ZOEzoe发布了新的文献求助10
1分钟前
gzl发布了新的文献求助150
1分钟前
科研通AI6应助zhengqh采纳,获得30
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
科目三应助Marco_hxkq采纳,获得10
1分钟前
英俊的香菇完成签到 ,获得积分10
2分钟前
witty完成签到,获得积分10
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104310
求助须知:如何正确求助?哪些是违规求助? 4314507
关于积分的说明 13443367
捐赠科研通 4142809
什么是DOI,文献DOI怎么找? 2269953
邀请新用户注册赠送积分活动 1272534
关于科研通互助平台的介绍 1209339