Groupwise Label Enhancement Broad Learning System for Image Classification

计算机科学 图像增强 人工智能 模式识别(心理学) 图像(数学)
作者
Junwei Jin,Suk-Yoon Chang,Junwei Duan,Yanting Li,Weiping Ding,Zhen Wang,C. L. Philip Chen,Peng Li
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tcyb.2025.3550175
摘要

The broad learning system (BLS) is a lightweight neural network known for its efficient learning capabilities; however, it is limited by its reliance on a binary label strategy. Existing label enhancement models primarily focus on increasing the distances between labels from different classes, which inadvertently expands the distance within the same category. For classification tasks, maintaining similarity within the intraclass is essential for ensuring the model's effectiveness. To address this issue, we propose a groupwise label enhancement BLS model that ensures both intraclass similarity and interclass disparity of labels. Specifically, we develop a novel regression target that generalizes existing label enhancement targets in BLS, increasing the distances between labels of different classes while overcoming the constraints imposed by binary labels. Moreover, we design a groupwise constraint to jointly enhance the intraclass similarity and interclass disparity of labels. Additionally, we propose a novel alternating direction method of multipliers-based optimization algorithm to solve our proposed model, ensuring both computational efficiency and theoretical convergence. Experimental results on several public datasets demonstrate the outstanding effectiveness and efficiency of our proposed model compared to other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1364135702完成签到 ,获得积分10
1秒前
liumuyi完成签到,获得积分20
1秒前
1秒前
1秒前
隐形曼青应助天天采纳,获得10
2秒前
后来应助小羊几点啦采纳,获得10
2秒前
iW发布了新的文献求助10
4秒前
星辰大海应助科研通管家采纳,获得30
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得30
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
友好聋五发布了新的文献求助10
5秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
daisy应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
k123456应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
黄bb应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
vetXue完成签到,获得积分10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
科研通AI5应助活泼的觅云采纳,获得10
8秒前
koi发布了新的文献求助10
9秒前
10秒前
11秒前
科研通AI2S应助专注的映之采纳,获得10
11秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799882
求助须知:如何正确求助?哪些是违规求助? 3345154
关于积分的说明 10324069
捐赠科研通 3061756
什么是DOI,文献DOI怎么找? 1680519
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462