Groupwise Label Enhancement Broad Learning System for Image Classification

计算机科学 图像增强 人工智能 模式识别(心理学) 图像(数学)
作者
Junwei Jin,Suk-Yoon Chang,Junwei Duan,Yanting Li,Weiping Ding,Zhen Wang,C. L. Philip Chen,Peng Li
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tcyb.2025.3550175
摘要

The broad learning system (BLS) is a lightweight neural network known for its efficient learning capabilities; however, it is limited by its reliance on a binary label strategy. Existing label enhancement models primarily focus on increasing the distances between labels from different classes, which inadvertently expands the distance within the same category. For classification tasks, maintaining similarity within the intraclass is essential for ensuring the model's effectiveness. To address this issue, we propose a groupwise label enhancement BLS model that ensures both intraclass similarity and interclass disparity of labels. Specifically, we develop a novel regression target that generalizes existing label enhancement targets in BLS, increasing the distances between labels of different classes while overcoming the constraints imposed by binary labels. Moreover, we design a groupwise constraint to jointly enhance the intraclass similarity and interclass disparity of labels. Additionally, we propose a novel alternating direction method of multipliers-based optimization algorithm to solve our proposed model, ensuring both computational efficiency and theoretical convergence. Experimental results on several public datasets demonstrate the outstanding effectiveness and efficiency of our proposed model compared to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助外向的静竹采纳,获得10
刚刚
刚刚
今后应助外向的静竹采纳,获得10
刚刚
ding应助外向的静竹采纳,获得10
刚刚
Ava应助外向的静竹采纳,获得10
刚刚
科目三应助外向的静竹采纳,获得10
刚刚
老实问旋完成签到,获得积分10
1秒前
1秒前
善学以致用应助ccc123采纳,获得10
1秒前
2秒前
yalin发布了新的文献求助10
2秒前
linhuom完成签到,获得积分10
2秒前
今后应助Huay采纳,获得10
2秒前
shirley发布了新的文献求助10
3秒前
zsr发布了新的文献求助30
3秒前
陈先生发布了新的文献求助30
5秒前
6秒前
田様应助喵喵喵采纳,获得10
6秒前
7秒前
小鱼发布了新的文献求助10
7秒前
天天快乐应助外向的静竹采纳,获得10
7秒前
天天快乐应助外向的静竹采纳,获得10
7秒前
完美世界应助外向的静竹采纳,获得10
7秒前
科目三应助外向的静竹采纳,获得10
7秒前
丘比特应助外向的静竹采纳,获得10
7秒前
7秒前
小蘑菇应助外向的静竹采纳,获得10
8秒前
桐桐应助外向的静竹采纳,获得10
8秒前
小蘑菇应助外向的静竹采纳,获得10
8秒前
ding应助外向的静竹采纳,获得10
8秒前
脑洞疼应助外向的静竹采纳,获得10
8秒前
研友_841rlL完成签到,获得积分10
8秒前
爆米花应助ZiZi采纳,获得10
8秒前
君君发布了新的文献求助10
11秒前
12秒前
12秒前
huagelihai完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4678999
求助须知:如何正确求助?哪些是违规求助? 4055664
关于积分的说明 12540829
捐赠科研通 3750049
什么是DOI,文献DOI怎么找? 2071259
邀请新用户注册赠送积分活动 1100312
科研通“疑难数据库(出版商)”最低求助积分说明 979786