材料科学
记忆电阻器
铁电性
领域(数学分析)
磁畴壁(磁性)
结晶学
凝聚态物理
纳米技术
光电子学
电介质
电子工程
磁化
物理
工程类
数学分析
磁场
量子力学
数学
化学
作者
Haidong Lu,Georg Schönweger,Niklas Wolff,Ziming Ding,A. Petraru,Isabel Streicher,H. Kohlstedt,Christian Kübel,Stefano Leone,Lorenz Kienle,Simon Fichtner,Alexei Gruverman
标识
DOI:10.1002/adfm.202503143
摘要
Abstract Emerging wurzite‐structured ferroelectrics can help satisfy the demand for high‐performance ferroelectrics compatible with III‐nitride and Si technology. One of their particularly appealing properties is related to the presence of conducting domain walls, which can be used as functional elements in the devices with electrically tunable resistance–memristors. Using a combination of piezoresponse force microscopy (PFM) and conductive atomic force microscopy (CAFM) techniques, the electrical conductivity of the head‐to‐head (H‐H) domain walls in the Al 0.85 Sc 0.15 N thin films on the n‐GaN substrate is directly demonstrated. Transmission electron microscopy (TEM) studies of the Al 0.85 Sc 0.15 N films reveal that the conducting nature of these domain walls is likely related to their inclination with respect to the polar axis, resulting in polarization discontinuity at the domain junctions. On the other hand, no increased conductivity has been detected for the tail‐to‐tail (T‐T) domain walls reflecting a semiconducting nature of Al 0.85 Sc 0.15 N thin films. Modulation of the domain wall density by voltage pulses with varying amplitude or duration allows realization of multiple stable resistance states with the maximum ON/OFF ratio of over 1500. These findings pave the way for the next‐generation of ferroelectric electronic devices compatible with III‐nitride technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI