Machine Learning Models With Prognostic Implications for Predicting Gastrointestinal Bleeding After Coronary Artery Bypass Grafting and Guiding Personalized Medicine: Multicenter Cohort Study

医学 队列 前瞻性队列研究 接收机工作特性 队列研究 布里氏评分 推导 风险评估 内科学 急诊医学 外科 机器学习 动脉 计算机科学 计算机安全
作者
Jiale Dong,Zhechuan Jin,Chengxiang Li,Jian Yang,Yi Jiang,Zeqian Li,Cheng Chen,Bo Zhang,Zhaofei Ye,Yang Hu,Jianguo Ma,Ping Li,Yulin Li,Dongjin Wang,Z H Ji
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e68509-e68509
标识
DOI:10.2196/68509
摘要

Background Gastrointestinal bleeding is a serious adverse event of coronary artery bypass grafting and lacks tailored risk assessment tools for personalized prevention. Objective This study aims to develop and validate predictive models to assess the risk of gastrointestinal bleeding after coronary artery bypass grafting (GIBCG) and to guide personalized prevention. Methods Participants were recruited from 4 medical centers, including a prospective cohort and the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. From an initial cohort of 18,938 patients, 16,440 were included in the final analysis after applying the exclusion criteria. Thirty combinations of machine learning algorithms were compared, and the optimal model was selected based on integrated performance metrics, including the area under the receiver operating characteristic curve (AUROC) and the Brier score. This model was then developed into a web-based risk prediction calculator. The Shapley Additive Explanations method was used to provide both global and local explanations for the predictions. Results The model was developed using data from 3 centers and a prospective cohort (n=13,399) and validated on the Drum Tower cohort (n=2745) and the MIMIC cohort (n=296). The optimal model, based on 15 easily accessible admission features, demonstrated an AUROC of 0.8482 (95% CI 0.8328-0.8618) in the derivation cohort. In external validation, the AUROC was 0.8513 (95% CI 0.8221-0.8782) for the Drum Tower cohort and 0.7811 (95% CI 0.7275-0.8343) for the MIMIC cohort. The analysis indicated that high-risk patients identified by the model had a significantly increased mortality risk (odds ratio 2.98, 95% CI 1.784-4.978; P<.001). For these high-risk populations, preoperative use of proton pump inhibitors was an independent protective factor against the occurrence of GIBCG. By contrast, dual antiplatelet therapy and oral anticoagulants were identified as independent risk factors. However, in low-risk populations, the use of proton pump inhibitors (χ21=0.13, P=.72), dual antiplatelet therapy (χ21=0.38, P=.54), and oral anticoagulants (χ21=0.15, P=.69) were not significantly associated with the occurrence of GIBCG. Conclusions Our machine learning model accurately identified patients at high risk of GIBCG, who had a poor prognosis. This approach can aid in early risk stratification and personalized prevention. Trial Registration Chinese Clinical Registry Center ChiCTR2400086050; http://www.chictr.org.cn/showproj.html?proj=226129
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ersan完成签到,获得积分10
刚刚
3秒前
4秒前
6秒前
11秒前
笑笑完成签到,获得积分20
12秒前
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得30
13秒前
所所应助科研通管家采纳,获得30
13秒前
Akim应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
勿明应助科研通管家采纳,获得30
14秒前
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
科研应助科研通管家采纳,获得10
14秒前
坚定碧完成签到 ,获得积分10
15秒前
积木123完成签到,获得积分10
16秒前
成成完成签到,获得积分0
17秒前
欣慰的天荷完成签到 ,获得积分10
18秒前
脑洞疼应助科研小破白菜采纳,获得10
19秒前
六尺巷发布了新的文献求助10
23秒前
24秒前
26秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
29秒前
晓宇发布了新的文献求助10
30秒前
yeluoyezhi完成签到,获得积分10
34秒前
Owen应助箱子采纳,获得10
39秒前
41秒前
深情安青应助aura采纳,获得10
51秒前
UUUUUp完成签到,获得积分10
53秒前
CipherSage应助jason采纳,获得10
1分钟前
小正完成签到,获得积分10
1分钟前
归尘应助豆豆采纳,获得10
1分钟前
土豆完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385