光催化
微晶
共轭体系
星团(航天器)
还原(数学)
氧还原
材料科学
氧气
光化学
空位缺陷
化学
化学工程
催化作用
有机化学
结晶学
物理化学
冶金
电化学
计算机科学
复合材料
聚合物
几何学
数学
电极
工程类
程序设计语言
作者
Krishna Samanta,Laxmikanta Mallick,Rahul Ghosh,Biswarup Chakraborty
标识
DOI:10.1002/cctc.202402153
摘要
An Anderson‐type hetero‐polyoxoanion, [Al(OH)6Mo6O18]3‐ (AlMo6) is conjugated to polycrystalline TiO2 matrix (AlMo6@TiO2) through multiple [Ti‐O‐Mo] linkages, characterized by electron microscopic studies. X‐ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) studies reveal high surface oxygen vacancies with dominant Ti3+ species in the AlMo6@TiO2. The experimentally determined band gap of 3.11 eV, conduction‐ and valence‐band potential of ‐0.84 V and 2.27 V (vs NHE), respectively of AlMo6@TiO2 is ideal to catalyze photochemical CO2 reduction to CO, and CH4, with significantly higher activity than bulk anatase TiO2. Detailed characterization and photocatalysis data show, despite having a lower lifetime of 0.39 µs for AlMo6@TiO2 than 0.62 µs of bulk anatase TiO2, the higher photoreduction of CO2 to CO by AlMo6@TiO2 is driven by the oxygen vacancies of TiO2. However, the use of a 10% H2O‐dimethyl sulfoxide mixture leads to a change in the product selectivity to 94% CH4. AlMo6 cluster is used here as a redox‐active and sufficiently bulky anionic cluster to uplift the bands of polycrystalline TiO2 towards more negative potential, sufficiently higher than CO2 reduction potential, and induces significant lattice defects or vacancy sites exposed during photocatalytic CO2 reduction with comparatively higher photochemical activity than the bulk TiO2.
科研通智能强力驱动
Strongly Powered by AbleSci AI