SiO2 Nanoparticles‐Induced Anti‐Freezing Hydrogel Electrolyte Enables Zn‐I2 Batteries with Complete and Reversible Four‐Electron‐Transfer Mechanisms at Low Temperatures

电解质 纳米颗粒 化学工程 水溶液 化学 电子转移 成核 冰点 动力学 离子键合 离子 材料科学 电极 热力学 物理化学 有机化学 工程类 物理 量子力学
作者
Minghui Chen,Guanhong Chen,Chenxi Sun,Xinyu Li,Minghao Zhang,Haiming Hua,Jinbao Zhao,Yang Yang
出处
期刊:Angewandte Chemie [Wiley]
被引量:6
标识
DOI:10.1002/anie.202502005
摘要

Four‐electron‐transfer aqueous zinc‐iodine batteries hold significant promise for large‐scale energy storage due to their high specific capacities. However, achieving four‐electron‐transfer mechanisms under subzero temperatures remains challenging due to freezing point limitations of conventional aqueous electrolytes and sluggish reaction kinetics. Herein, an anti‐freezing hydrogel electrolyte (HC‐SiO2) is developed through the spontaneous gelation of a high‐concentration electrolyte (1 m Zn(OAc)2 + 21 m LiCl, HC) with SiO2 nanoparticles, enabling low‐temperature operation of quasi‐solid‐state Zn‐I2 batteries with complete and reversible four‐electron‐transfer processes. Abundant interactions between dispersed SiO2 nanoparticles and cations enlarge ion‐pair distances, reducing close ion‐pair formation and lowering the freezing temperature (‐60.7 °C). Furthermore, the quasi‐solid‐state hydrogel electrolyte combines advantages of reduced water activity and disrupted hydrogen‐bond networks, effectively suppressing I+ hydrolysis while inhibiting ice nucleation. Additionally, the utilization of low‐concentration Zn(OAc)2 combined with high‐concentration LiCl increases availability of free Cl‐ by mitigating strong ionic interaction in conventional ZnCl2‐based concentrated electrolytes, thereby enhancing reaction kinetics of the I2/I+ conversion. Benefiting from synergistic manipulation of ionic interaction, water activity and Cl‐ activity, the HC‐SiO2 hydrogel achieves a high capacity of 490.9 mAh g‐1 and durable lifespan exceeding 11,000 cycles at ‐20 °C. These findings offer valuable insights for advancing practical low‐temperature Zn‐I2 batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8D完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
5k全完成签到 ,获得积分10
2秒前
kanong完成签到,获得积分0
4秒前
kyle完成签到 ,获得积分10
4秒前
sdjjis完成签到 ,获得积分10
5秒前
欢喜板凳完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
11秒前
dhjsks完成签到,获得积分10
12秒前
干将莫邪完成签到,获得积分10
13秒前
高高的哈密瓜完成签到 ,获得积分10
15秒前
princip完成签到 ,获得积分10
17秒前
小学徒完成签到 ,获得积分10
21秒前
大轩完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
研友_GZ3zRn完成签到 ,获得积分0
27秒前
量子星尘发布了新的文献求助30
37秒前
没头脑和不高兴完成签到 ,获得积分10
39秒前
chemyin完成签到,获得积分10
43秒前
老白完成签到,获得积分10
44秒前
chwjx完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
52秒前
yihuifa完成签到 ,获得积分10
58秒前
从容的水壶完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
guoxihan完成签到,获得积分10
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
眰恦完成签到 ,获得积分0
1分钟前
殷勤的紫槐应助科研通管家采纳,获得200
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
qq完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
laber应助科研通管家采纳,获得30
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
zyw完成签到 ,获得积分10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066606
求助须知:如何正确求助?哪些是违规求助? 4288648
关于积分的说明 13360230
捐赠科研通 4107937
什么是DOI,文献DOI怎么找? 2249462
邀请新用户注册赠送积分活动 1254909
关于科研通互助平台的介绍 1187221