亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying Potent Compounds Using Pairwise Consensus Methods

成对比较 计算机科学 计算生物学 人工智能 生物
作者
Marc Xu,Chenyang Wu,Shiyu Wang,Wenjin Zhan,Liwei Guo,Yi Li,Horst Vogel,Shuguang Yuan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00942
摘要

Molecular docking is a widely used method within the in silico compound screening process of modern drug discovery. The accuracy of this method for predicting high-affinity small-molecule binders for a target protein from a large chemical library can be substantially improved by combining individual docking tools for cross-validation. This traditional consensus strategy typically relies on averaging scores or ranks obtained from molecular docking, which are, however, vulnerable to false positives and thus exploit shortcomings from scoring functions. To overcome this remarkable weakness, we developed here the pairwise consensus score (PCS) algorithm. PCS integrates structural similarity information on ligand-receptor complexes to evaluate predicted conformations and penalize highly dissimilar docked poses. To demonstrate the versatility of PCS, we developed a consensus docking protocol for targeting G protein-coupled receptors (GPCRs) that are among the most important targets for modern drug discovery. In particular, we screened a large compound library for highly potent antagonism ligands to an important GPCR therapeutic target, the neurokinin 1 receptor, and found several compounds targeting the receptor with ten-picomolar activity. Notably, these highly active compounds show a totally different chemical structure from that of previously reported NK1 binders. This opens exciting opportunities to develop drugs with unique alternative pharmacological features and therapeutic value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
胡胡胡发布了新的文献求助10
6秒前
zmd完成签到 ,获得积分10
8秒前
研友_Zzrx6Z发布了新的文献求助20
20秒前
小小鱼发布了新的文献求助10
26秒前
王二完成签到,获得积分10
28秒前
小小鱼完成签到,获得积分10
33秒前
皮老师发布了新的文献求助20
37秒前
42秒前
丸橙完成签到,获得积分10
44秒前
库里强发布了新的文献求助10
45秒前
丸橙发布了新的文献求助10
47秒前
48秒前
FashionBoy应助朴素的曼易采纳,获得10
51秒前
rerorero18完成签到,获得积分10
53秒前
53秒前
在水一方应助rerorero18采纳,获得10
55秒前
57秒前
58秒前
坦率邪欢发布了新的文献求助10
1分钟前
叽里呱啦完成签到 ,获得积分10
1分钟前
SciGPT应助003采纳,获得20
1分钟前
李某完成签到 ,获得积分10
1分钟前
SYLH应助ZhangYuan采纳,获得10
1分钟前
深情安青应助ZhangYuan采纳,获得10
1分钟前
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
科目三应助坦率邪欢采纳,获得10
1分钟前
思源应助俭朴的滑板采纳,获得10
1分钟前
小二郎应助啦啦啦采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
俭朴的滑板完成签到,获得积分10
1分钟前
1分钟前
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
丘比特应助丸橙采纳,获得10
1分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830364
求助须知:如何正确求助?哪些是违规求助? 3372779
关于积分的说明 10475199
捐赠科研通 3092539
什么是DOI,文献DOI怎么找? 1702118
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087