Estimating Erratic Measurement Errors in Network-Wide Traffic Flow via Virtual Balance Sensors

平衡(能力) 流量(计算机网络) 流量网络 计算机科学 运输工程 流量(数学) 观测误差 模拟 工程类 实时计算 计量经济学 数学优化 计算机网络 数学 医学 几何学 物理医学与康复
作者
Zhenjie Zheng,Zhengli Wang,Hao Fu,Wei Ma
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0493
摘要

Large-scale traffic flow data are collected by numerous sensors for managing and operating transport systems. However, various measurement errors exist in the sensor data and their distributions or structures are usually not known in the real world, which diminishes the reliability of the collected data and impairs the performance of smart mobility applications. Such irregular error is referred to as the erratic measurement error and has not been well investigated in existing studies. In this research, we propose to estimate the erratic measurement errors in networked traffic flow data. Different from existing studies that mainly focus on measurement errors with known distributions or structures, we allow the distributions and structures of measurement errors to be unknown except that measurement errors occur based on a Poisson process. By exploiting the flow balance law, we first introduce the concept of virtual balance sensors and develop a mixed integer nonlinear programming model to simultaneously estimate sensor error probabilities and recover traffic flow. Under suitable assumptions, the complex integrated problem can be equivalently viewed as an estimate-then-optimize problem: first, estimation using machine learning (ML) methods, and then optimization with mathematical programming. When the assumptions fail in more realistic scenarios, we further develop a smart estimate-then-optimize (SEO) framework that embeds the optimization model into ML training loops to solve the problem. Compared with the two-stage method, the SEO framework ensures that the optimization process can recognize and compensate for inaccurate estimations caused by ML methods, which can produce more reliable results. Finally, we conduct numerical experiments using both synthetic and real-world examples under various scenarios. Results demonstrate the effectiveness of our decomposition approach and the superiority of the SEO framework. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods for Urban Mobility. Funding: The work described in this paper was supported by the National Natural Science Foundation of China [Grant Project No. 72288101, 72101012, 72301023] and a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Grant Project No. PolyU/15206322]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0493 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yami完成签到 ,获得积分10
4秒前
4秒前
cdercder应助科研通管家采纳,获得20
17秒前
roundtree完成签到 ,获得积分10
17秒前
celia完成签到 ,获得积分10
22秒前
优雅含灵完成签到 ,获得积分10
25秒前
蛋卷完成签到 ,获得积分10
27秒前
28秒前
汉堡包应助Marksman497采纳,获得30
30秒前
衣蝉完成签到 ,获得积分10
35秒前
36秒前
DMA50完成签到 ,获得积分10
37秒前
江二毛发布了新的文献求助10
40秒前
西西关注了科研通微信公众号
40秒前
43秒前
拉长的青筠完成签到,获得积分10
44秒前
Marksman497完成签到,获得积分10
45秒前
Marksman497发布了新的文献求助30
48秒前
叮叮当当完成签到,获得积分10
48秒前
hhhh完成签到 ,获得积分10
53秒前
jue完成签到 ,获得积分10
56秒前
57秒前
阳阳霜霜完成签到,获得积分10
59秒前
洁净的静芙完成签到 ,获得积分10
1分钟前
pangkuan完成签到,获得积分10
1分钟前
我说苏卡你说不列完成签到,获得积分10
1分钟前
Cici完成签到 ,获得积分10
1分钟前
在水一方应助雪山飞龙采纳,获得10
1分钟前
欣欣完成签到 ,获得积分10
1分钟前
HEIKU应助卢敏明采纳,获得10
1分钟前
大气夜山完成签到 ,获得积分10
1分钟前
John完成签到 ,获得积分10
1分钟前
tianliyan完成签到 ,获得积分10
1分钟前
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
甜蜜的白桃完成签到 ,获得积分10
1分钟前
HEIKU应助卢敏明采纳,获得10
1分钟前
aiyawy完成签到 ,获得积分10
2分钟前
hsrlbc完成签到,获得积分10
2分钟前
西安浴日光能赵炜完成签到,获得积分10
2分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819982
求助须知:如何正确求助?哪些是违规求助? 3362858
关于积分的说明 10418933
捐赠科研通 3081206
什么是DOI,文献DOI怎么找? 1695017
邀请新用户注册赠送积分活动 814815
科研通“疑难数据库(出版商)”最低求助积分说明 768539