已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Docking guidance with experimental ligand structural density improves docking pose prediction and virtual screening performance

药效团 对接(动物) 虚拟筛选 蛋白质-配体对接 计算机科学 力场(虚构) 杠杆(统计) 人工智能 化学 立体化学 医学 护理部
作者
Althea Hansel-Harris,Andreas F. Tillack,Diogo Santos‐Martins,Matthew Holcomb,Stefano Forli
出处
期刊:Protein Science [Wiley]
卷期号:34 (3)
标识
DOI:10.1002/pro.70082
摘要

Abstract Recent advances in structural biology have led to the publication of a wealth of high‐resolution x‐ray crystallography (XRC) and cryo‐EM macromolecule structures, including many complexes with small molecules of interest for drug design. While it is common to incorporate information from the atomic coordinates of these complexes into docking (e.g., pharmacophore models or scaffold hopping), there are limited methods to directly leverage the underlying density information. This is desirable because it does not rely on the determination of relevant coordinates, which may require expert intervention, but instead interprets all density as indicative of regions to which a ligand may be bound. To do so, we have developed CryoXKit, a tool to incorporate experimental densities from either cryo‐EM or XRC as a biasing potential on heavy atoms during docking. Using this structural density guidance with AutoDock‐GPU, we found significant improvements in re‐docking and cross‐docking, important pose prediction tasks, compared with the unmodified AutoDock4 force field. Failures in cross‐docking tasks are additionally reflective of changes in the positioning of pharmacophores in the site, suggesting it is a fundamental limitation of transferring information between complexes. We additionally found, against a set of targets selected from the LIT‐PCBA dataset, that rescoring of these improved poses leads to better discriminatory power in virtual screenings for selected targets. Overall, CryoXKit provides a user‐friendly method for improving docking performance with experimental data while requiring no a priori pharmacophore definition and at virtually no computational expense. Map‐modification code available at: https://github.com/forlilab/CryoXKit .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我去打球发布了新的文献求助10
3秒前
3秒前
3秒前
舟舟完成签到 ,获得积分10
5秒前
天天快乐应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
黄垚发布了新的文献求助10
6秒前
苏鱼完成签到 ,获得积分10
11秒前
木有完成签到 ,获得积分10
11秒前
加油杨完成签到 ,获得积分10
11秒前
14秒前
顾矜应助天才少年王旭东采纳,获得10
15秒前
asd1576562308完成签到 ,获得积分10
18秒前
20秒前
24秒前
26秒前
张琦完成签到 ,获得积分10
27秒前
王王完成签到 ,获得积分10
27秒前
Raunio完成签到,获得积分10
31秒前
32秒前
落寞飞烟完成签到,获得积分10
35秒前
36秒前
lin发布了新的文献求助10
41秒前
后会无期完成签到,获得积分10
43秒前
巴山夜雨完成签到,获得积分10
48秒前
皮皮蟹完成签到,获得积分10
48秒前
prtrichor599完成签到 ,获得积分10
49秒前
忧虑的羊完成签到 ,获得积分10
49秒前
文静小刺猬完成签到,获得积分10
50秒前
洁净的易巧完成签到,获得积分10
50秒前
念之完成签到 ,获得积分10
51秒前
酷波er应助王子采纳,获得10
52秒前
wyy完成签到 ,获得积分10
53秒前
月流雨完成签到,获得积分10
57秒前
1分钟前
1分钟前
1分钟前
tradimed发布了新的文献求助10
1分钟前
王子发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795475
求助须知:如何正确求助?哪些是违规求助? 3340512
关于积分的说明 10300384
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677368
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491