Application Value of A Clinical Radiomic Nomogram for Identifying Diabetic Nephropathy and Nondiabetic Renal Disease

医学 列线图 逻辑回归 接收机工作特性 糖尿病肾病 单变量 Lasso(编程语言) 放射科 内科学 多元统计 机器学习 计算机科学 万维网
作者
Xiaoling Liu,Weihan Xiao,Qiao Jing,Xiachuan Qin
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:21
标识
DOI:10.2174/0115734056332507250210105723
摘要

Objective: An ultrasound-based radiomics Machine Learning Model (ML) was utilized to assess non-invasively the conditions of diabetic nephropathy and non-diabetic renal disease in diabetic patients. Methods: A retrospective examination was conducted on 166 diabetic patients who had undergone renal biopsies guided by ultrasound, with the group comprising 114 individuals diagnosed with diabetic nephropathy and 52 with non-diabetic renal disease. The participants were randomly divided into the training set and the testing set (7:3). Following the extraction of radiomics features from the renal ultrasound images, a univariate analysis was conducted, and the Least Absolute Shrinkage And Selection Operator (LASSO) algorithm was applied to select the most significant features. Three ML algorithms were applied to construct the prediction models. Subsequently, the patients' clinical characteristics were evaluated through both univariate and multivariate logistic regression analyses, which facilitated the development of a clinical model, following a clinical radiomics model was formulated, integrating the radiomics scores (Radscore), along with the independent clinical variables identified through the screening process. The diagnostic performance of the three models constructed was evaluated using the receiver operating characteristic (ROC) curve analysis. Results: Among the three radiomics ML models, the logistic regression (LR) model achieved the best performance, with the area under the curve (AUC) values of 0.872 (95%CI, 0.800-0.944) and 0.836 (95%CI, 0.716-0.957) for the training set and the testing set, respectively. The decision curve analysis (DCA) verified the clinical practicability of the ML model. Within the same testing set, the AUC of the clinical model was 0.761 (95%CI, 0.606-0.916). The nomogram model based on clinical features plus Radscore showed the best discrimination, with an AUC value of 0.881 (95%CI, 0.779-0.982), which was better than that of the single clinical model and the radiomics model. Conclusion: The ML model of radiomics based on ultrasound images has potential value in the non-invasive differential diagnosis of patients with diabetic nephropathy. The nomogram constructed based on rad score and clinical features could effectively distinguish DN from NDRD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
善学以致用应助Bi8bo采纳,获得10
1秒前
二两白茶完成签到,获得积分10
1秒前
搜集达人应助LHT采纳,获得10
2秒前
坚持完成签到,获得积分10
3秒前
小李完成签到,获得积分10
4秒前
完美世界应助自由的聋五采纳,获得10
4秒前
斯文败类应助Joyj99采纳,获得10
4秒前
xu发布了新的文献求助10
5秒前
深情安青应助Adfireu采纳,获得10
5秒前
顾矜应助Panmm采纳,获得10
5秒前
7秒前
乐乐发布了新的文献求助10
7秒前
vision完成签到,获得积分10
7秒前
淡淡菠萝完成签到 ,获得积分10
7秒前
7秒前
7秒前
sdq完成签到,获得积分10
8秒前
华仔应助激昂的凉面采纳,获得10
8秒前
8秒前
香蕉觅云应助xiaolv采纳,获得10
8秒前
jian完成签到,获得积分10
9秒前
cqrao完成签到,获得积分20
9秒前
李健的小迷弟应助mysk采纳,获得10
9秒前
桔梗完成签到,获得积分10
9秒前
Chengcheng发布了新的文献求助30
9秒前
情怀应助朱鸿超采纳,获得30
10秒前
麦辣鸡翅关注了科研通微信公众号
10秒前
11秒前
奥黛丽完成签到,获得积分10
11秒前
小二郎应助学习使人头大采纳,获得10
12秒前
windsea完成签到,获得积分0
12秒前
12秒前
科研通AI2S应助打地鼠工人采纳,获得10
12秒前
失眠傲白发布了新的文献求助10
12秒前
12秒前
12秒前
525发布了新的文献求助10
12秒前
烟花应助cqrao采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786253
求助须知:如何正确求助?哪些是违规求助? 3332038
关于积分的说明 10252966
捐赠科研通 3047287
什么是DOI,文献DOI怎么找? 1672503
邀请新用户注册赠送积分活动 801315
科研通“疑难数据库(出版商)”最低求助积分说明 760141