Difficulties and Recommendations for AI-Based Prediction of Prostate Cancer Aggressiveness in Digital Pathology

数字化病理学 前列腺癌 稳健性(进化) 计算机科学 人工智能 分级(工程) 机器学习 医学物理学 医学 病理 数据挖掘 癌症 基因 内科学 工程类 土木工程 化学 生物化学
作者
Michael Brehler,Peter Walhagen,Christer Busch,Stefan Bonn,Ewert Bengtsson
出处
期刊:Medical research archives [Knowledge Enterprises Journals]
卷期号:11 被引量:1
标识
DOI:10.18103/mra.v11i11.4586
摘要

Prostate cancer is among the most common cancers in men with around 1.4 million new cases each year world-wide. A vital part in the diagnosis of prostate cancer is the evaluation of its severity using biopsies and histopathology. Recent progress in artificial intelligence-based image analysis has led to a flurry of algorithms for the automated analysis of prostate cancer histopathological data focusing on the detection of cancerous areas, the grading of cancer severity, and patient outcome. Some of these approaches have reached human expert-level performance and digital models trained directly on patient outcomes might surpass human performance in the future. Although these results hold great promise for the future usage of digital pathology in clinical settings, several bottlenecks remain to be addressed. Especially the robustness, reliability and trustworthiness of predictions must be guaranteed across a wide range of variation in protocols and instrumentation. While human experts are relatively robust to technical and biological variation in biopsies, artificial intelligence-based systems tend to struggle with differences in staining intensity, color, scanner type, and image resolution, impeding the clinical usage of digital models. In this work we highlight salient problems and minimal requirements of computational pathology for future use in clinical settings, while focusing on prostate cancer as a use case. In particular, we highlight data and model problems and solutions that include data variability, dataset size, and data annotations, as well as model robustness to data heterogeneity, model prediction confidence, and the explainability of model decisions. While model and data requirements for successful computational pathology in clinics will be highlighted, legal, ethical, and deployment requirements will not be addressed in this review. In summary, we provide a short overview of the field, salient problems, and potential solutions to harvest the full potential of digital pathology for prostate cancer in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
梁其杰完成签到,获得积分10
2秒前
4秒前
renpp822发布了新的文献求助30
7秒前
7秒前
彭三忘发布了新的文献求助20
9秒前
tyy完成签到,获得积分10
11秒前
图雄争霸完成签到 ,获得积分10
12秒前
renpp822完成签到,获得积分10
16秒前
wanci应助drdouxia采纳,获得10
16秒前
19秒前
了0完成签到 ,获得积分10
21秒前
victor完成签到,获得积分10
21秒前
姿势完成签到,获得积分10
22秒前
不是省油的灯完成签到 ,获得积分10
27秒前
Akim应助啦啦啦采纳,获得10
27秒前
clock完成签到 ,获得积分10
29秒前
xiaopang完成签到,获得积分10
30秒前
微风完成签到 ,获得积分10
32秒前
在水一方应助暴躁的元霜采纳,获得10
35秒前
35秒前
研友_VZG7GZ应助JIMMY采纳,获得10
35秒前
高兴的蜻蜓完成签到,获得积分10
36秒前
科研通AI2S应助standingo采纳,获得10
40秒前
qy发布了新的文献求助10
41秒前
43秒前
背后访风完成签到 ,获得积分10
45秒前
文静灵阳完成签到 ,获得积分10
47秒前
XXHH完成签到 ,获得积分10
47秒前
48秒前
JIMMY发布了新的文献求助10
48秒前
hotcas完成签到,获得积分10
49秒前
54秒前
阳光怀亦完成签到,获得积分10
56秒前
1分钟前
lily发布了新的文献求助10
1分钟前
You完成签到,获得积分10
1分钟前
风趣灵槐完成签到,获得积分10
1分钟前
小阿博完成签到,获得积分10
1分钟前
李健的小迷弟应助Enoelle采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779649
求助须知:如何正确求助?哪些是违规求助? 3325127
关于积分的说明 10221379
捐赠科研通 3040230
什么是DOI,文献DOI怎么找? 1668691
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535