凝聚态物理
色散关系
自旋波
铁磁性
中子散射
物理
无定形固体
半径
色散(光学)
散射
领域(数学)
各向异性
材料科学
光学
结晶学
计算机科学
计算机安全
数学
化学
纯数学
作者
S. V. Grigoriev,Л. А. Азарова,K. A. Pshenichnyi,Oleg I. Utesov
标识
DOI:10.1134/s1063776123100059
摘要
Dispersion of spin waves in the amorphous ferromagnetic alloy Fe48Ni34P18 can be described within the model of a ferromagnet with random anisotropy: $$\epsilon $$ (q) = Aq2 + gμBH + δω(q), where δω(q) is an additional term linear in |q|. The method of small-angle scattering of polarized neutrons is used to prove the importance of the additional term δω(q) in dispersion. The measurements are carried out for different values of the external magnetic field H and neutron wavelength λ. The scattering map of neutrons represents a circle centered at the point q = 0. The stiffness A of spin waves is derived directly from the λ-dependence of the radius of this circle. The spin-wave stiffness A of the amorphous alloy weakly decreases from 140 to 110 meV Å2 as temperature increases from 50 to 300 K. The field dependence of the radius demonstrates the presence of an additional term δω(q) in the form of an energy gap that is almost independent of field and temperature. The value of the additional term is Δ = 0.015 ± 0.002 meV.
科研通智能强力驱动
Strongly Powered by AbleSci AI