亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SHAP values accurately explain the difference in modeling accuracy of convolution neural network between soil full-spectrum and feature-spectrum

人工智能 平滑的 高光谱成像 计算机科学 特征(语言学) 深度学习 人工神经网络 模式识别(心理学) 卷积神经网络 精准农业 生态学 哲学 语言学 计算机视觉 生物 农业
作者
Liang Zhong,Guo Xi,Meng Ding,Yingcong Ye,Yefeng Jiang,Qing Zhu,Jianlong Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108627-108627 被引量:42
标识
DOI:10.1016/j.compag.2024.108627
摘要

Acquiring soil nutrient content quickly and accurately through remote sensing is the key to advance precision agriculture. The development of deep learning has provided new technical means for soil hyperspectral modeling. However, the problem of poor interpretability of deep learning models limits its development. Although SHapley Additive exPlanations (SHAP) values based on game theory have been successfully applied to the interpretation of deep learning soil spectral modeling, whether they can accurately explain the differences in deep learning model accuracy remains to be verified. Based on this, we explored whether SHAP values can accurately explain the differences in convolutional neural network (CNN) modeling accuracy. We collected soil samples from agricultural land in the Liangshui River Basin in the southern mountainous and hilly areas of China, and measured the soil total nitrogen (STN) content and soil spectral data in the laboratory. We compared the effects of full-spectrum and feature-spectrum on the accuracy of deep learning models, and obtained the contribution of wavelengths in the CNN modeling process by calculating SHAP values. The results showed that combining different spectral pre-processing methods can play their respective advantages and help improve modeling accuracy. Among them, the CNN model obtained the highest prediction accuracy under the first-derivative Savitzky-Golay smoothing combination standard normal variate (SG1-SNV) spectral pre-processing in full-spectrum modeling. Compared with the feature-spectrum selected for modeling by Mutual information (MI) and competitive adaptive reweighted sampling (CARS), the CNN model achieved higher accuracy in most pre-processed spectra in full-spectrum modeling, and SHAP values accurately explained this reason. This is because the contribution is usually higher at most wavelengths with a high correlation with STN content. The feature-spectrum selected by CARS is more widely distributed but lacks continuity, and some wavelengths with high correlation and high contribution will also be missed. Meanwhile, some wavelengths with low correlation also have high contributions, which are usually not involved in the feature spectrum modeling of MI, thus affecting the modeling accuracy. Therefore, the deep learning model is more suitable for full-spectrum modeling due to its strong feature extraction and self-learning capabilities, and SHAP can obtain the wavelength contribution of the CNN model in soil spectral modeling, and then explain the differences in modeling accuracy. This study further proves the interpretability of deep learning, provides an important basis for the application of deep learning in soil hyperspectral modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助秋日思语采纳,获得10
17秒前
靓丽战斗机完成签到 ,获得积分10
34秒前
WYS22发布了新的文献求助10
39秒前
科目三应助秋日思语采纳,获得10
57秒前
WYS22完成签到,获得积分10
1分钟前
Kristopher完成签到 ,获得积分10
1分钟前
1分钟前
大个应助科研通管家采纳,获得10
2分钟前
wrl2023完成签到,获得积分10
2分钟前
英俊的铭应助观众采纳,获得10
2分钟前
最落幕完成签到 ,获得积分10
2分钟前
3分钟前
贺俊龙发布了新的文献求助30
3分钟前
研友_VZG7GZ应助贺俊龙采纳,获得10
3分钟前
Cherry发布了新的文献求助10
3分钟前
Cherry完成签到,获得积分10
3分钟前
大个应助科研通管家采纳,获得10
4分钟前
5分钟前
Lulu完成签到,获得积分10
5分钟前
journey完成签到 ,获得积分10
5分钟前
玛琳卡迪马完成签到,获得积分10
6分钟前
ysy完成签到,获得积分10
7分钟前
7分钟前
似乎一场梦完成签到 ,获得积分10
7分钟前
科研通AI5应助andrele采纳,获得10
7分钟前
小王发布了新的文献求助10
7分钟前
starry发布了新的文献求助10
7分钟前
Joanna完成签到,获得积分10
7分钟前
万能图书馆应助小王采纳,获得10
7分钟前
隐形曼青应助starry采纳,获得10
8分钟前
CipherSage应助科研通管家采纳,获得200
8分钟前
8分钟前
贺俊龙完成签到,获得积分10
8分钟前
贺俊龙发布了新的文献求助10
8分钟前
淡然绝山完成签到,获得积分10
8分钟前
山野完成签到 ,获得积分10
9分钟前
xupt唐僧完成签到,获得积分10
9分钟前
斯文败类应助淡然绝山采纳,获得10
10分钟前
花花糖果完成签到 ,获得积分10
10分钟前
大模型应助科研通管家采纳,获得10
10分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210943
求助须知:如何正确求助?哪些是违规求助? 4387557
关于积分的说明 13662973
捐赠科研通 4247533
什么是DOI,文献DOI怎么找? 2330349
邀请新用户注册赠送积分活动 1328118
关于科研通互助平台的介绍 1280881