Exploiting global and instance-level perceived feature relationship matrices for 3D face reconstruction and dense alignment

计算机科学 水准点(测量) 特征(语言学) 人工智能 钥匙(锁) 模式识别(心理学) 特征提取 卷积神经网络 匹配(统计) 面子(社会学概念) 机器学习 数据挖掘 社会科学 哲学 语言学 统计 计算机安全 数学 大地测量学 社会学 地理
作者
Lei Li,Fuqiang Liu,Junyuan Wang,Yanni Wang,Yifan Chen,Xinyu Hu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:131: 107862-107862
标识
DOI:10.1016/j.engappai.2024.107862
摘要

3D face reconstruction and dense alignment play a key role in digital humans. Learning-based approaches have been developed by employing cascaded convolutional neural networks for feature extraction and spatial-semantic relationship construction. However, these networks often struggle with accurately capturing the complex relationships among various facial components and attributes, particularly in unconstrained environments. Furthermore, the mappings modeled by convolutional weights are at low levels, which are usually implicit and local, and lack global discrimination. In this paper, we propose a global and instance-level perceived relationship matrices-based network (PRMNet) to recover high-fidelity 3D faces and perform accurate dense alignment in unconstrained environments. Specifically, a Key Information Extraction Module (KIEM) extracts crucial features from global and local feature banks. This reduces reasoning costs while maintaining high perceptual quality. Learnable global and instance-level perceived feature relationship matrices are then integrated into the Feature Relationship Reasoning Module (FRRM). This calibration combines key information from both the global macroscopic and sample-specific microscopic views, allowing accurate construction of spatial-semantic relationships to harvest both global discrimination and local relevance. Finally, we introduce a Spatial Reasoning and Guidance Module (SRGM), designed to recalibrate the joint weight responses of feature extraction and its enhancement paths using various attention mechanisms, thereby further enhancing global discrimination ability. Extensive quantitative and qualitative experiments on the benchmark datasets show that our PRMNet outperforms the state-of-the-art. Codes and all resources will be publicly available at https://github.com/Ray-tju/PRMNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水晶李完成签到 ,获得积分10
6秒前
AnyYuan完成签到 ,获得积分10
8秒前
8秒前
leo完成签到,获得积分10
10秒前
10秒前
wowser发布了新的文献求助10
14秒前
16秒前
皮皮完成签到 ,获得积分10
21秒前
沧海云完成签到 ,获得积分10
26秒前
wowser完成签到,获得积分10
26秒前
TJway完成签到,获得积分10
31秒前
37秒前
38秒前
吕健发布了新的文献求助10
44秒前
51秒前
上善若水呦完成签到 ,获得积分10
51秒前
吕健完成签到,获得积分10
51秒前
LT完成签到 ,获得积分0
52秒前
从容的水壶完成签到 ,获得积分10
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
满鑫完成签到,获得积分10
1分钟前
guoguosky完成签到 ,获得积分10
1分钟前
baitaowl完成签到 ,获得积分10
1分钟前
踏实谷蓝完成签到 ,获得积分10
1分钟前
空白完成签到 ,获得积分10
1分钟前
兜兜揣满糖完成签到 ,获得积分10
1分钟前
1分钟前
Hindiii完成签到,获得积分10
1分钟前
煜琪完成签到 ,获得积分10
1分钟前
jingsihan完成签到,获得积分10
1分钟前
蓝桉完成签到 ,获得积分10
1分钟前
1分钟前
愉快蓝完成签到 ,获得积分10
1分钟前
hazel完成签到,获得积分10
2分钟前
QP34完成签到 ,获得积分10
2分钟前
hi_traffic完成签到,获得积分10
2分钟前
默11完成签到 ,获得积分10
2分钟前
kenchilie完成签到 ,获得积分10
2分钟前
喜悦的香之完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10300957
捐赠科研通 3057185
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626