Radial projection-based adaptive sampling strategies for surrogate-assisted many-objective optimization

计算机科学 自适应采样 投影(关系代数) 采样(信号处理) 替代模型 人工智能 多目标优化 数学优化 机器学习 算法 计算机视觉 统计 蒙特卡罗方法 数学 滤波器(信号处理)
作者
Juchen Hong,Anqi Pan,Zhengyun Ren,Xue Feng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:130: 107745-107745 被引量:1
标识
DOI:10.1016/j.engappai.2023.107745
摘要

Intelligent manufacturing and industrial control systems frequently encounter expensive many-objective optimization problems (EMaOPs). Surrogate-assisted evolutionary algorithms (SAEAs) build predictive models to substitute the expensive fitness evaluation, enabling them to solve optimization more efficiently. In SAEAs, to enhance the exploration of optimization and the generalization of the surrogate model, the diversity of infill offspring and training database should be well-maintained, which is challenging in high-dimensional spaces or problems with disconnected Pareto front. This paper suggests a radial projection-based surrogate-assisted framework for solving EMaOPs. The radial projection can map the high-dimensional objective space into a 2-dimensional radial space. Based on this, a dynamic quadratic division method is proposed to enhance the diversity of solutions. Furthermore, an adaptive infill sampling criterion is introduced based on the distribution of selected convergent solutions, and a training database updating strategy is designed under the premise of maintaining its diversity and the model training efficiency. The presented framework exhibits a notable level of flexibility and adaptability as it can be effortlessly combined with other multi-objective optimization algorithms. Several experimental results on a set of expensive multi/many-objective test problems have demonstrated the superiority of the framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助自信若之采纳,获得10
1秒前
vv完成签到,获得积分10
12秒前
Ava应助月亮采纳,获得10
12秒前
xiaoxiao汉堡应助NXK采纳,获得10
14秒前
星辰大海应助烂漫耳机采纳,获得10
15秒前
谷蓝完成签到,获得积分10
16秒前
16秒前
田様应助易槐采纳,获得10
18秒前
科研通AI2S应助体贴啤酒采纳,获得10
18秒前
19秒前
22秒前
23秒前
24秒前
李七七完成签到,获得积分20
25秒前
26秒前
scq发布了新的文献求助10
26秒前
28秒前
JMchiefEditor发布了新的文献求助10
28秒前
29秒前
茶荼发布了新的文献求助10
29秒前
29秒前
烂漫耳机发布了新的文献求助10
29秒前
笑点低的凝阳完成签到,获得积分10
30秒前
科研通AI2S应助dt采纳,获得10
31秒前
大气的柜子完成签到,获得积分10
34秒前
小石头完成签到 ,获得积分10
35秒前
1111发布了新的文献求助10
35秒前
38秒前
Lucas应助Dimple采纳,获得10
39秒前
JIE完成签到,获得积分10
39秒前
40秒前
42秒前
karcorl发布了新的文献求助10
44秒前
科盲TCB完成签到,获得积分10
45秒前
46秒前
浮云发布了新的文献求助30
47秒前
47秒前
1111完成签到,获得积分10
48秒前
Hina完成签到,获得积分10
48秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976