Radial projection-based adaptive sampling strategies for surrogate-assisted many-objective optimization

计算机科学 自适应采样 投影(关系代数) 采样(信号处理) 替代模型 人工智能 多目标优化 数学优化 机器学习 算法 计算机视觉 统计 蒙特卡罗方法 数学 滤波器(信号处理)
作者
Juchen Hong,Anqi Pan,Zhengyun Ren,Xue Feng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:130: 107745-107745 被引量:1
标识
DOI:10.1016/j.engappai.2023.107745
摘要

Intelligent manufacturing and industrial control systems frequently encounter expensive many-objective optimization problems (EMaOPs). Surrogate-assisted evolutionary algorithms (SAEAs) build predictive models to substitute the expensive fitness evaluation, enabling them to solve optimization more efficiently. In SAEAs, to enhance the exploration of optimization and the generalization of the surrogate model, the diversity of infill offspring and training database should be well-maintained, which is challenging in high-dimensional spaces or problems with disconnected Pareto front. This paper suggests a radial projection-based surrogate-assisted framework for solving EMaOPs. The radial projection can map the high-dimensional objective space into a 2-dimensional radial space. Based on this, a dynamic quadratic division method is proposed to enhance the diversity of solutions. Furthermore, an adaptive infill sampling criterion is introduced based on the distribution of selected convergent solutions, and a training database updating strategy is designed under the premise of maintaining its diversity and the model training efficiency. The presented framework exhibits a notable level of flexibility and adaptability as it can be effortlessly combined with other multi-objective optimization algorithms. Several experimental results on a set of expensive multi/many-objective test problems have demonstrated the superiority of the framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
登登完成签到,获得积分10
1秒前
上上签完成签到,获得积分10
2秒前
研友_Zeq7gZ完成签到,获得积分20
3秒前
务实的绝悟完成签到,获得积分10
3秒前
3秒前
可爱的小树苗完成签到,获得积分10
3秒前
waitstill完成签到,获得积分10
4秒前
小飞完成签到,获得积分10
4秒前
满意的跳跳糖完成签到 ,获得积分10
4秒前
fan完成签到,获得积分10
5秒前
超级盼烟完成签到,获得积分10
5秒前
yaowenjun完成签到,获得积分10
5秒前
南遇完成签到,获得积分10
6秒前
Mylong发布了新的文献求助10
7秒前
dd33完成签到,获得积分10
7秒前
Amorphous完成签到,获得积分10
7秒前
Fury完成签到 ,获得积分10
7秒前
激昂的君浩完成签到,获得积分10
7秒前
我爱科研完成签到 ,获得积分10
8秒前
LVVVB完成签到,获得积分10
8秒前
betyby完成签到 ,获得积分10
9秒前
Yoo完成签到,获得积分10
10秒前
整齐醉冬完成签到,获得积分10
10秒前
Graham完成签到,获得积分10
10秒前
闫栋完成签到 ,获得积分10
10秒前
小苏完成签到 ,获得积分10
11秒前
12秒前
欣喜电脑应助小曲采纳,获得10
13秒前
天马行空完成签到,获得积分10
13秒前
成就的钢笔完成签到 ,获得积分20
13秒前
14秒前
15秒前
西哥完成签到,获得积分10
15秒前
Tohka完成签到 ,获得积分10
16秒前
Setlla完成签到 ,获得积分10
16秒前
mufcyang发布了新的文献求助10
16秒前
JC完成签到,获得积分10
17秒前
echo完成签到,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570943
求助须知:如何正确求助?哪些是违规求助? 3992327
关于积分的说明 12357387
捐赠科研通 3665133
什么是DOI,文献DOI怎么找? 2019936
邀请新用户注册赠送积分活动 1054342
科研通“疑难数据库(出版商)”最低求助积分说明 941891