Artificial intelligence of arterial Doppler waveforms to predict major adverse outcomes among patients with diabetes mellitus

医学 内科学 心脏病学 多普勒效应 不利影响 糖尿病 内分泌学 天文 物理
作者
Robert D. McBane,Dennis H. Murphree,David Liedl,Francisco López-Jiménez,Adelaide M. Arruda‐Olson,Christopher G. Scott,Naresh Prodduturi,Steve E. Nowakowski,Thom W. Rooke,Ana I. Casanegra,Waldemar E. Wysokiński,Damon E. Houghton,Kalpana Muthusamy,Paul W. Wennberg
出处
期刊:Journal of Vascular Surgery [Elsevier]
卷期号:80 (1): 251-259.e3 被引量:3
标识
DOI:10.1016/j.jvs.2024.02.024
摘要

Patients with diabetes mellitus (DM) are at increased risk for peripheral artery disease (PAD) and its complications. Arterial calcification and non-compressibility may limit test interpretation in this population. Developing tools capable of identifying PAD and predicting major adverse cardiac event (MACE) and limb event (MALE) outcomes among patients with DM would be clinically useful. Deep neural network analysis of resting Doppler arterial waveforms was used to detect PAD among patients with DM and to identify those at greatest risk for major adverse outcome events.Consecutive patients with DM undergoing lower limb arterial testing (April 1, 2015-December 30, 2020) were randomly allocated to training, validation, and testing subsets (60%, 20%, and 20%). Deep neural networks were trained on resting posterior tibial arterial Doppler waveforms to predict all-cause mortality, MACE, and MALE at 5 years using quartiles based on the distribution of the prediction score.Among 11,384 total patients, 4211 patients with DM met study criteria (mean age, 68.6 ± 11.9 years; 32.0% female). After allocating the training and validation subsets, the final test subset included 856 patients. During follow-up, there were 262 deaths, 319 MACE, and 99 MALE. Patients in the upper quartile of prediction based on deep neural network analysis of the posterior tibial artery waveform provided independent prediction of death (hazard ratio [HR], 3.58; 95% confidence interval [CI], 2.31-5.56), MACE (HR, 2.06; 95% CI, 1.49-2.91), and MALE (HR, 13.50; 95% CI, 5.83-31.27).An artificial intelligence enabled analysis of a resting Doppler arterial waveform permits identification of major adverse outcomes including all-cause mortality, MACE, and MALE among patients with DM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
爱听歌的悒完成签到,获得积分10
2秒前
2秒前
3秒前
隐形曼青应助可可采纳,获得10
3秒前
SciGPT应助松松松采纳,获得10
3秒前
Ppao7ii完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
CodeCraft应助不安雪一采纳,获得10
4秒前
才染发布了新的文献求助10
5秒前
依古比古发布了新的文献求助10
5秒前
5秒前
MET1发布了新的文献求助10
6秒前
6秒前
xxcccc发布了新的文献求助10
7秒前
7秒前
无极微光应助小怪采纳,获得20
8秒前
才染发布了新的文献求助10
8秒前
Erste完成签到 ,获得积分10
8秒前
逍遥游发布了新的文献求助10
9秒前
9秒前
9秒前
ding应助NeoWu采纳,获得10
11秒前
爆米花应助Larry1226采纳,获得10
11秒前
研友_VZG7GZ应助窖藏喜之郎采纳,获得10
11秒前
11秒前
12秒前
12秒前
我是老大应助yao chen采纳,获得10
12秒前
12秒前
木木木完成签到,获得积分20
13秒前
lzy发布了新的文献求助10
13秒前
汉堡包应助小马采纳,获得10
13秒前
团子发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730174
求助须知:如何正确求助?哪些是违规求助? 5321976
关于积分的说明 15318160
捐赠科研通 4876827
什么是DOI,文献DOI怎么找? 2619662
邀请新用户注册赠送积分活动 1569070
关于科研通互助平台的介绍 1525722