ALAN: Self-Attention Is Not All You Need for Image Super-Resolution

计算机科学 计算机视觉 图像分辨率 分辨率(逻辑) 人工智能 图像(数学)
作者
Qiangpu Chen,Jinghui Qin,Wushao Wen
出处
期刊:IEEE Signal Processing Letters [Institute of Electrical and Electronics Engineers]
卷期号:31: 11-15 被引量:14
标识
DOI:10.1109/lsp.2023.3337726
摘要

Vision Transformer (ViT)-based image super-resolution (SR) methods have achieved impressive performance and surpassed CNN-based SR methods by utilizing Multi-Head Self-Attention (MHSA) to model long-range dependencies. However, the quadratic complexity of MHSA and the inefficiency of non-parallelized window partition seriously affect the inference speed, hindering these SR methods from being applied to application scenarios requiring speed and quality. To address this issue, we propose an Asymmetric Large-kernel Attention Network (ALAN) utilizing a stage-to-block design paradigm inspired by ViT. In the ALAN, the core block named Asymmetric Large Kernel Convolution Block (ALKCB) adopts a similar structure to the Swin Transformer Layer but replaces the MHSA with our proposed Asymmetric Depth-Wise Convolution Attention (ADWCA) to enhance both the SR quality and inference speed. The proposed ADWCA, with linear complexity, uses large kernel depth-wise dilation convolution and Hadamard product as the attention map. The structural re-parameterization technique to strengthen the kernel skeletons with asymmetric convolution is also explored. Experimental results demonstrate that ALAN achieves state-of-the-art performance with faster inference speed than ViT-based models and smaller parameters than CNN-based models. Specifically, the tiny size of ALAN (ALAN-T) is $3\times$ smaller than ShuffleMixer with similar performance, and ALAN is $4\times$ faster than SwinIR-S with 0.1 dB gain in PSNR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小智完成签到,获得积分10
1秒前
所所应助ww采纳,获得10
2秒前
不去的新完成签到,获得积分10
2秒前
延小龙发布了新的文献求助10
2秒前
田様应助Frozen Flame采纳,获得30
3秒前
打打应助特来骑采纳,获得10
4秒前
王舍予发布了新的文献求助30
4秒前
4秒前
6秒前
天天快乐应助潜竹采纳,获得10
6秒前
caohuijun发布了新的文献求助10
7秒前
李爱国应助LJQ采纳,获得10
7秒前
Long完成签到,获得积分10
8秒前
神帝大主宰完成签到,获得积分10
8秒前
9秒前
HHZ完成签到,获得积分10
10秒前
little发布了新的文献求助10
10秒前
CY发布了新的文献求助30
10秒前
xiaoju发布了新的文献求助10
12秒前
12秒前
所所应助yss采纳,获得10
12秒前
12秒前
全寻桃完成签到 ,获得积分10
12秒前
科研通AI6应助siyuyu采纳,获得10
13秒前
甜美慕灵完成签到,获得积分10
13秒前
天Q发布了新的文献求助10
14秒前
祝愿完成签到,获得积分10
14秒前
乐乐应助wwee采纳,获得10
14秒前
chujyz完成签到,获得积分10
16秒前
17秒前
糖糖发布了新的文献求助80
17秒前
dorothyhatty关注了科研通微信公众号
17秒前
小蘑菇应助李雨采纳,获得10
17秒前
LJQ发布了新的文献求助10
17秒前
嗷嗷嗷完成签到,获得积分10
17秒前
思源应助asedrf采纳,获得10
17秒前
MesureWu给MesureWu的求助进行了留言
18秒前
所所应助澎鱼盐采纳,获得10
18秒前
终梦应助caohuijun采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285983
求助须知:如何正确求助?哪些是违规求助? 4438872
关于积分的说明 13819173
捐赠科研通 4320458
什么是DOI,文献DOI怎么找? 2371458
邀请新用户注册赠送积分活动 1367032
关于科研通互助平台的介绍 1330429