铱
材料科学
催化作用
电解
化学工程
质子交换膜燃料电池
电解水
制作
制氢
纳米技术
化学
电极
生物化学
物理化学
工程类
电解质
医学
替代医学
病理
作者
Darius Hoffmeister,S.M. Finger,Lars Fiedler,Tien‐Ching Ma,Andreas Körner,Matej Zlatar,Birk Fritsch,Kerstin Witte-Bodnar,Simon Carl,Alexander Götz,Benjamin Apeleo Zubiri,Johannes Will,Erdmann Spiecker,Serhiy Cherevko,Anna T. S. Freiberg,Karl J. J. Mayrhofer,Simon Thiele,Andreas Hutzler,Chuyen Van Pham
标识
DOI:10.26434/chemrxiv-2024-kld98
摘要
The widespread application of green hydrogen production technologies requires cost reduction of crucial elements. To achieve this, a viable pathway to reduce the iridium loading in proton exchange membrane water electrolysis (PEMWE) is explored. Herein, we present a scalable synthesis method based on a photodeposition process for a TiO2@IrOx core-shell catalyst with a reduced iridium content as low as 40 wt%. Using this synthesis route, we obtain titania support particles homogeneously coated with a thin iridium oxide shell of only 2.1 ± 0.4 nm. The catalyst exhibits not only high ex situ activity, but also decent stability compared to commercially available catalysts. Furthermore, the unique core-shell structure provides a threefold increased electrical powder conductivity compared to structures without the shell. In addition, the low iridium content facilitates the fabrication of sufficiently thick catalyst layers at decreased iridium loadings mitigating the impact of crack formation in the catalyst layer during PEMWE operation. We demonstrate that the novel TiO2@IrOx core-shell catalyst clearly outperforms the commercial reference in single-cell tests with an iridium loading below 0.3 mgIr cm 2 exhibiting a superior iridium-specific power density of 17.9 kW gIr-1 compared to 10.4 kW gIr-1 for the commercial reference.
科研通智能强力驱动
Strongly Powered by AbleSci AI