Assessment of intracranial aneurysm rupture risk using a point cloud-based deep learning model

动脉瘤 点云 云计算 医学 深度学习 计算机科学 人工智能 心脏病学 放射科 操作系统
作者
Heshan Cao,Hui Zeng,Lei Lv,Qi Wang,Hua Ouyang,Long Gui,Ping Hua,Songran Yang
出处
期刊:Frontiers in Physiology [Frontiers Media]
卷期号:15 被引量:7
标识
DOI:10.3389/fphys.2024.1293380
摘要

Background and Purpose: Precisely assessing the likelihood of an intracranial aneurysm rupturing is critical for guiding clinical decision-making. The objective of this study is to construct and validate a deep learning framework utilizing point clouds to forecast the likelihood of aneurysm rupturing. Methods: The dataset included in this study consisted of a total of 623 aneurysms, with 211 of them classified as ruptured and 412 as unruptured, which were obtained from two separate projects within the AneuX morphology database. The HUG project, which included 124 ruptured aneurysms and 340 unruptured aneurysms, was used to train and internally validate the model. For external validation, another project named @neurIST was used, which included 87 ruptured and 72 unruptured aneurysms. A standardized method was employed to isolate aneurysms and a segment of their parent vessels from the original 3D vessel models. These models were then converted into a point cloud format using open3d package to facilitate training of the deep learning network. The PointNet++ architecture was utilized to process the models and generate risk scores through a softmax layer. Finally, two models, the dome and cut1 model, were established and then subjected to a comprehensive comparison of statistical indices with the LASSO regression model built by the dataset authors. Results: The cut1 model outperformed the dome model in the 5-fold cross-validation, with the mean AUC values of 0.85 and 0.81, respectively. Furthermore, the cut1 model beat the morphology-based LASSO regression model with an AUC of 0.82. However, as the original dataset authors stated, we observed potential generalizability concerns when applying trained models to datasets with different selection biases. Nevertheless, our method outperformed the LASSO regression model in terms of generalizability, with an AUC of 0.71 versus 0.67. Conclusion: The point cloud, as a 3D visualization technique for intracranial aneurysms, can effectively capture the spatial contour and morphological aspects of aneurysms. More structural features between the aneurysm and its parent vessels can be exposed by keeping a portion of the parent vessels, enhancing the model's performance. The point cloud-based deep learning model exhibited good performance in predicting rupture risk while also facing challenges in generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lll发布了新的文献求助10
刚刚
刚刚
Luna发布了新的文献求助30
1秒前
半夏完成签到,获得积分10
1秒前
1秒前
苏苏苏苏发布了新的文献求助10
1秒前
2秒前
橄榄囚徒完成签到 ,获得积分10
2秒前
lois发布了新的文献求助10
2秒前
2秒前
xxx发布了新的文献求助10
2秒前
不想干活应助way采纳,获得10
2秒前
Owen应助研友_Lwb9X8采纳,获得10
2秒前
张伟发布了新的文献求助10
2秒前
科研通AI2S应助tzq采纳,获得10
3秒前
玉玊发布了新的文献求助10
3秒前
sd完成签到,获得积分10
3秒前
小小威廉发布了新的文献求助10
3秒前
3秒前
Charlene发布了新的文献求助10
4秒前
兴奋爆米花完成签到,获得积分10
4秒前
犹豫勇完成签到,获得积分10
5秒前
鸡狗不如完成签到,获得积分10
5秒前
Hello应助苏杰采纳,获得10
5秒前
5秒前
orixero应助狗子爱吃桃桃采纳,获得10
6秒前
漠漠完成签到,获得积分10
6秒前
吉鲁转圈圈完成签到 ,获得积分10
6秒前
BTW发布了新的文献求助10
6秒前
ding应助dawn采纳,获得10
7秒前
超级盼烟发布了新的文献求助10
7秒前
yushuailong完成签到,获得积分20
7秒前
7秒前
田叫兽发布了新的文献求助10
7秒前
耍酷的梦桃完成签到,获得积分10
8秒前
9秒前
Rain发布了新的文献求助30
9秒前
9秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4473811
求助须知:如何正确求助?哪些是违规求助? 3932677
关于积分的说明 12201148
捐赠科研通 3587334
什么是DOI,文献DOI怎么找? 1972022
邀请新用户注册赠送积分活动 1009885
科研通“疑难数据库(出版商)”最低求助积分说明 903517