Mapping vegetation height and identifying the northern forest limit across Canada using ICESat-2, Landsat time series and topographic data

遥感 系列(地层学) 植被(病理学) 时间序列 地质学 环境科学 计算机科学 医学 古生物学 病理 机器学习
作者
Hana Travers-Smith,Nicholas C. Coops,Christopher Mulverhill,Michael A. Wulder,D. Ignace,Trevor C. Lantz
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:305: 114097-114097 被引量:3
标识
DOI:10.1016/j.rse.2024.114097
摘要

The northern forest-tundra ecotone is one of the fastest warming regions of the globe. Models of vegetation change generally predict a northward advance of boreal forests and corresponding retreat of the tundra. Previous satellite remote sensing analyses in this region have focused on mapping vegetation greenness and tree cover derived from optical multi-spectral sensors. Changes in vegetation structure relating to height and biomass are less frequently investigated due to limited availability of lidar data over space and time in comparison with optical platforms. As such, there is an opportunity to combine lidar and optical remote sensing products for continuous mapping of vegetation structure at high-latitudes, with an emphasis on the forest-tundra transition. In this study, we used lidar data from the Ice, Cloud and land Elevation Satellite (ICESat-2) to classify canopy presence/absence, and predict canopy height across 120 million hectares of the Canadian forest-tundra ecotone at 30 m spatial resolution. Spatially continuous predictors derived from the Landsat satellite archive (2012−2021) and the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) Digital Elevation Model were used to extrapolate 98th percentile canopy height from the ICESat-2 Land and Vegetation Height (ATL08) product using Random Forests models developed in R (version 4.2.2). Model accuracy was assessed using data from the Land, Vegetation and Ice Sensor (LVIS), a large-footprint airborne lidar system. The overall accuracy of the canopy presence classification was 89%, and canopy presence was detected with 88% accuracy. Models of vegetation height showed an overall R2 of 0.54 and RMSE of 2.09 m. Finally, we used these methods to map the limit of continuous 3 m forest across Canada and compared our model outputs with forest cover from the MODIS and Landsat Vegetation Continuous Fields datasets. This work demonstrates the challenges and potential for mapping horizontal and vertical vegetation structure within sparse, high latitude forests using both lidar and optical remote sensing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
㊣㊣完成签到,获得积分10
刚刚
1秒前
道森发布了新的文献求助10
1秒前
彭于晏应助甜崽采纳,获得10
2秒前
Accepted应助rAbit采纳,获得10
2秒前
2秒前
3秒前
WittingGU完成签到,获得积分0
3秒前
tuzhifengyin完成签到,获得积分10
3秒前
优美的山柳完成签到,获得积分10
3秒前
4秒前
dal完成签到,获得积分20
7秒前
大模型应助ZHANGMANLI0422采纳,获得10
7秒前
上官若男应助朱家晓采纳,获得10
7秒前
7秒前
7秒前
lmy发布了新的文献求助10
8秒前
留胡子的桐完成签到 ,获得积分10
8秒前
llly完成签到,获得积分10
11秒前
安紊完成签到,获得积分10
12秒前
xiaoyi发布了新的文献求助10
12秒前
14秒前
花开富贵完成签到,获得积分10
15秒前
今后应助等风来采纳,获得10
17秒前
铲铲完成签到,获得积分10
20秒前
20秒前
朱家晓发布了新的文献求助10
21秒前
王一完成签到 ,获得积分10
21秒前
23秒前
23秒前
提灯完成签到,获得积分20
23秒前
26秒前
26秒前
28秒前
大头完成签到 ,获得积分10
29秒前
30秒前
LIANG发布了新的文献求助10
31秒前
花开富贵发布了新的文献求助10
32秒前
big龙完成签到,获得积分10
33秒前
朴实雨竹完成签到,获得积分10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808948
求助须知:如何正确求助?哪些是违规求助? 3353666
关于积分的说明 10366348
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766320