Targeted A‐to‐T and A‐to‐C base replacement in maize using an optimized adenine base editor

基础(拓扑) 生物 数学 数学分析
作者
Dating Zhong,Hong Pan,Kai Li,Ying Zhou,Fang Zhao,Yao Lu,S. Ruan,Qiong Deng,Jieting Xu,Yuming Lu
出处
期刊:Plant Biotechnology Journal [Wiley]
标识
DOI:10.1111/pbi.14256
摘要

Base editors, including cytosine and adenine base editors (CBE and ABE), are promising tools for precise genome modification. They enable the generation of single nucleotide variants in plants for research and crop improvement (Li et al., 2020; Manghwar et al., 2019; Ren et al., 2021; Xu et al., 2021; Zeng et al., 2022). However, existing base editors are still limited in the types of base conversions they can induce. Recently, a new base editor was constructed by fusing an engineered N-methylpurine DNA glycosylase (MPG) with ABE to create AYBE. This has achieved efficient A-to-T and A-to-C (A-to-Y, AYBE) transversions in mammalian cells and also timely assessed in rice to induce A-to-T (AKBE) (Li et al., 2023; Tong et al., 2023; Wu et al., 2023). However, the editing activity of AYBE remains unexplored in maize, and its editing efficiency leaves room for further optimization. Here, by fusing the adenine base editor with a codon-optimized N-methylpurine DNA glycosylase (MPG) and co-expressing the maize translesion synthesis DNA polymerase η (Polη), we developed an optimized AYBE base editor (ZmAYBEv3) for both A-to-T and A-to-C base conversions with high efficiency in maize and other monocots plants. First, the human-derived MPG (hMPG) was engineered (G163R, N169S, S198A, K202A, G203A, S206A and K210A) and codon-optimized for maize (MzMPG), then fused to the C-terminus of the maize ABE editor ZmABE8e to construct the initial AYBE editor ZmAYBEv1 (Figure 1a). Two sgRNAs (sgRNA1 and sgRNA2) targeting maize genes ZmGA20ox3 and ZmCT2 were designed. Hundreds of young embryos from the inbred maize variety KN5585 were transformed with Agrobacterium for evaluation. Approximately 50 regenerated shoots from each transformation were pooled and genotyped using the next-generation sequencing (NGS). As expected, only A-to-G substitutions were detected in samples edited with the conventional ZmABE8e, while A-to-Y conversions were found in ZmAYBEv1 edited samples (Figure 1b). For example, at the A8 site of sgRNA1, the A-to-T and A-to-C conversion frequencies were 3.86% and 0.53%, respectively, demonstrating the A-to-Y editing activity of ZmAYBEv1. We then tested it in maize plants. A total of 45 T0 plants were obtained and genotyped by NGS (Liu et al., 2019). The results showed seven T0 plants contained A-to-Y substitutions, further demonstrating ZmAYBEv1's editing capability in plantlet (Figure 1c; Table S1). However, the chimerism state of A-to-Y substitutions (calculated from the proportion of NGS reads, Li et al., 2023) was too low in most mutants. Usually, T0 plants with a chimerism>10% are required to ensure heritability. Thus, only one mutant could be identified as a valid A-to-T edited line, and no A-to-C editing lines were found. This revealed the need for further improvement of ZmAYBEv1. Polη is involved in the replication of damaged DNA and may improve base editing efficiency (Tong et al., 2023). Accordingly, human and maize Polη (hPolη and ZmPolη) were incorporated into ZmAYBEv1 to construct ZmAYBEv2 and ZmAYBEv3, respectively (Figure 1a). Quick tests in maize embryos showed a significant increase in A-to-T and A-to-C editing efficiencies when using ZmAYBEv3 (Figure 1b), indicating positive regulation of ZmPolη on AYBE. We think that different base conversion types between pAYBEv2 and pAYBEv3 might be caused by the different enzymatic activity of hPolη and ZmPolη (Figure S1). To assess them in transgenic plants, 39 and 52 T0 plants were generated using ZmAYBEv2 and ZmAYBEv3, respectively, targeting the same two genes above (Figure 1c). As expected, substantially more A-to-Y edited plants (7 out of 23 with chimerism>10%, the same hereinafter) were identified in ZmAYBEv3 edited lines for ZmGA20ox3. At sgRNA2 of ZmCT2, an uneditable site for ZmAYBEv1 or ZmAYBEv2, an A-to-T editing plant was successfully obtained using ZmAYBEv3. Moreover, three A-to-C edited lines were also identified. To confirm the editing results, we then resequenced the ZmAYBEv3-derived lines by Sanger sequencing and further confirmed these results (Figure 1d; Figure S2). Notably, we also found that homozygous lines could be generated in T0 plants. The homozygous A-to-T editing at the sgRNA1 (A8) of ZmGA20ox3 produced a premature stop codon (AAG to TAG), resulting in a semi-dwarf phenotype of maize, even in T0 generation (Figure 1e,f). These results indicate ZmAYBEv3 has the highest editing efficiency, capable of both A-to-T and A-to-C editing. To further confirm the versatility of ZmAYBEv3, we targeted three additional maize genes (ZmLW2, ZmABH2 and ZmLBD5) for editing. We regenerated 51 T0 maize plants and performed NGS genotyping. The results showed successful A-to-Y editing by ZmAYBEv3 at all three genes, with an average efficiency of 35.3% (18/51). Notably, the A-to-T editing frequency reached 45.5% at the ZmLBD5 locus. Given the known transferability of base editors across monocot species, we also tested ZmAYBEv3 in rice on three genes (OskTN80b, OsWaxy and OsTB1). NGS and Sanger sequencing showed ZmAYBEv3 could efficiently induce A-to-Y editing at the three rice genes with an average efficiency of 21.1% (12/57) (Figure 1c,d; Figure S3). In some locus, the A8 site within a sgRNA seems the best targeting nucleotide (Figure 1g). Together, these results further validate the editing activity of ZmAYBEv3 in both maize and other monocot species. Collectively, the incorporation of ZmPolη enhanced the A-to-Y editing efficiency of ZmAYBEv3. Across five target sites in 103 T0 maize plants, 50 plants had A-to-Y conversions (chimerism >1%), validating its capabilities. Notably, 26 plants (25.2%) showed potentially heritable edits (chimerism>10%). ZmAYBEv3 also enables the possibility of obtaining homozygous edits within the T0 generation. The high editing efficiencies achieved by ZmAYBEv3 in maize and rice highlight its usefulness as an alternative tool to supplement existing base and prime editors for functional studies and trait improvement in crops. Supported by the National Key R&D Program of China (No. 2021YFD1201300) and the National Natural Science Foundation of China (No. 32070396) to Y.L. We thank WIMI for assistance with maize transformation. D.Z. and Y.L. designed the research; D.Z, H.P., K.L., Y.Z., F.Z., L.Y., S.R., Q.D. and J.X. performed experiments; D.Z. and Y.L. wrote and revised the manuscript. The authors declare no competing interests. The data that supports the findings of this study are available in the supplementary material of this article. Data S1 Supplemental methods. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大豌豆发布了新的文献求助10
1秒前
梨凉完成签到,获得积分10
3秒前
student发布了新的文献求助10
3秒前
6秒前
搜集达人应助水濑心源采纳,获得10
6秒前
669完成签到,获得积分10
7秒前
沙田的柚子完成签到 ,获得积分10
8秒前
惜寒完成签到 ,获得积分10
9秒前
9秒前
Behappy完成签到 ,获得积分10
10秒前
咖飞完成签到,获得积分10
10秒前
瑾玉完成签到,获得积分10
11秒前
成就的白羊完成签到,获得积分10
12秒前
wanli445完成签到,获得积分10
13秒前
azixiao完成签到,获得积分10
14秒前
八轩发布了新的文献求助10
15秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
HuFan1201完成签到 ,获得积分10
16秒前
1+1应助科研通管家采纳,获得10
16秒前
1351567822应助科研通管家采纳,获得50
16秒前
16秒前
奋斗的凡完成签到 ,获得积分10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
1+1应助科研通管家采纳,获得10
16秒前
HEIKU举报leaf求助涉嫌违规
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
17秒前
研友_Z6Q45n应助科研通管家采纳,获得10
17秒前
1+1应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671619
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779523
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610158
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093