Targeted A‐to‐T and A‐to‐C base replacement in maize using an optimized adenine base editor

基础(拓扑) 生物 数学 数学分析
作者
Dating Zhong,Hong Pan,Kai Li,Ying Zhou,Fang Zhao,Yao Lu,S. Ruan,Qiong Deng,Jieting Xu,Yuming Lu
出处
期刊:Plant Biotechnology Journal [Wiley]
标识
DOI:10.1111/pbi.14256
摘要

Base editors, including cytosine and adenine base editors (CBE and ABE), are promising tools for precise genome modification. They enable the generation of single nucleotide variants in plants for research and crop improvement (Li et al., 2020; Manghwar et al., 2019; Ren et al., 2021; Xu et al., 2021; Zeng et al., 2022). However, existing base editors are still limited in the types of base conversions they can induce. Recently, a new base editor was constructed by fusing an engineered N-methylpurine DNA glycosylase (MPG) with ABE to create AYBE. This has achieved efficient A-to-T and A-to-C (A-to-Y, AYBE) transversions in mammalian cells and also timely assessed in rice to induce A-to-T (AKBE) (Li et al., 2023; Tong et al., 2023; Wu et al., 2023). However, the editing activity of AYBE remains unexplored in maize, and its editing efficiency leaves room for further optimization. Here, by fusing the adenine base editor with a codon-optimized N-methylpurine DNA glycosylase (MPG) and co-expressing the maize translesion synthesis DNA polymerase η (Polη), we developed an optimized AYBE base editor (ZmAYBEv3) for both A-to-T and A-to-C base conversions with high efficiency in maize and other monocots plants. First, the human-derived MPG (hMPG) was engineered (G163R, N169S, S198A, K202A, G203A, S206A and K210A) and codon-optimized for maize (MzMPG), then fused to the C-terminus of the maize ABE editor ZmABE8e to construct the initial AYBE editor ZmAYBEv1 (Figure 1a). Two sgRNAs (sgRNA1 and sgRNA2) targeting maize genes ZmGA20ox3 and ZmCT2 were designed. Hundreds of young embryos from the inbred maize variety KN5585 were transformed with Agrobacterium for evaluation. Approximately 50 regenerated shoots from each transformation were pooled and genotyped using the next-generation sequencing (NGS). As expected, only A-to-G substitutions were detected in samples edited with the conventional ZmABE8e, while A-to-Y conversions were found in ZmAYBEv1 edited samples (Figure 1b). For example, at the A8 site of sgRNA1, the A-to-T and A-to-C conversion frequencies were 3.86% and 0.53%, respectively, demonstrating the A-to-Y editing activity of ZmAYBEv1. We then tested it in maize plants. A total of 45 T0 plants were obtained and genotyped by NGS (Liu et al., 2019). The results showed seven T0 plants contained A-to-Y substitutions, further demonstrating ZmAYBEv1's editing capability in plantlet (Figure 1c; Table S1). However, the chimerism state of A-to-Y substitutions (calculated from the proportion of NGS reads, Li et al., 2023) was too low in most mutants. Usually, T0 plants with a chimerism>10% are required to ensure heritability. Thus, only one mutant could be identified as a valid A-to-T edited line, and no A-to-C editing lines were found. This revealed the need for further improvement of ZmAYBEv1. Polη is involved in the replication of damaged DNA and may improve base editing efficiency (Tong et al., 2023). Accordingly, human and maize Polη (hPolη and ZmPolη) were incorporated into ZmAYBEv1 to construct ZmAYBEv2 and ZmAYBEv3, respectively (Figure 1a). Quick tests in maize embryos showed a significant increase in A-to-T and A-to-C editing efficiencies when using ZmAYBEv3 (Figure 1b), indicating positive regulation of ZmPolη on AYBE. We think that different base conversion types between pAYBEv2 and pAYBEv3 might be caused by the different enzymatic activity of hPolη and ZmPolη (Figure S1). To assess them in transgenic plants, 39 and 52 T0 plants were generated using ZmAYBEv2 and ZmAYBEv3, respectively, targeting the same two genes above (Figure 1c). As expected, substantially more A-to-Y edited plants (7 out of 23 with chimerism>10%, the same hereinafter) were identified in ZmAYBEv3 edited lines for ZmGA20ox3. At sgRNA2 of ZmCT2, an uneditable site for ZmAYBEv1 or ZmAYBEv2, an A-to-T editing plant was successfully obtained using ZmAYBEv3. Moreover, three A-to-C edited lines were also identified. To confirm the editing results, we then resequenced the ZmAYBEv3-derived lines by Sanger sequencing and further confirmed these results (Figure 1d; Figure S2). Notably, we also found that homozygous lines could be generated in T0 plants. The homozygous A-to-T editing at the sgRNA1 (A8) of ZmGA20ox3 produced a premature stop codon (AAG to TAG), resulting in a semi-dwarf phenotype of maize, even in T0 generation (Figure 1e,f). These results indicate ZmAYBEv3 has the highest editing efficiency, capable of both A-to-T and A-to-C editing. To further confirm the versatility of ZmAYBEv3, we targeted three additional maize genes (ZmLW2, ZmABH2 and ZmLBD5) for editing. We regenerated 51 T0 maize plants and performed NGS genotyping. The results showed successful A-to-Y editing by ZmAYBEv3 at all three genes, with an average efficiency of 35.3% (18/51). Notably, the A-to-T editing frequency reached 45.5% at the ZmLBD5 locus. Given the known transferability of base editors across monocot species, we also tested ZmAYBEv3 in rice on three genes (OskTN80b, OsWaxy and OsTB1). NGS and Sanger sequencing showed ZmAYBEv3 could efficiently induce A-to-Y editing at the three rice genes with an average efficiency of 21.1% (12/57) (Figure 1c,d; Figure S3). In some locus, the A8 site within a sgRNA seems the best targeting nucleotide (Figure 1g). Together, these results further validate the editing activity of ZmAYBEv3 in both maize and other monocot species. Collectively, the incorporation of ZmPolη enhanced the A-to-Y editing efficiency of ZmAYBEv3. Across five target sites in 103 T0 maize plants, 50 plants had A-to-Y conversions (chimerism >1%), validating its capabilities. Notably, 26 plants (25.2%) showed potentially heritable edits (chimerism>10%). ZmAYBEv3 also enables the possibility of obtaining homozygous edits within the T0 generation. The high editing efficiencies achieved by ZmAYBEv3 in maize and rice highlight its usefulness as an alternative tool to supplement existing base and prime editors for functional studies and trait improvement in crops. Supported by the National Key R&D Program of China (No. 2021YFD1201300) and the National Natural Science Foundation of China (No. 32070396) to Y.L. We thank WIMI for assistance with maize transformation. D.Z. and Y.L. designed the research; D.Z, H.P., K.L., Y.Z., F.Z., L.Y., S.R., Q.D. and J.X. performed experiments; D.Z. and Y.L. wrote and revised the manuscript. The authors declare no competing interests. The data that supports the findings of this study are available in the supplementary material of this article. Data S1 Supplemental methods. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suxin发布了新的文献求助10
1秒前
王大夫完成签到 ,获得积分10
3秒前
楚天完成签到,获得积分10
5秒前
7秒前
HCKACECE完成签到 ,获得积分10
11秒前
123发布了新的文献求助10
12秒前
叶子完成签到,获得积分10
13秒前
tivyg'lk完成签到,获得积分10
14秒前
JiangHb完成签到,获得积分10
14秒前
李健的小迷弟应助胡八一采纳,获得10
16秒前
cheng完成签到,获得积分10
17秒前
怀歌发布了新的文献求助10
17秒前
PJ完成签到,获得积分0
17秒前
epmoct完成签到 ,获得积分10
19秒前
闹一闹吧费曼先生完成签到 ,获得积分10
19秒前
Arthur完成签到,获得积分10
20秒前
施小展完成签到,获得积分10
26秒前
找文献呢发布了新的文献求助20
26秒前
群群完成签到,获得积分10
27秒前
哈哈哈哈完成签到 ,获得积分10
27秒前
Ava应助复杂念梦采纳,获得10
29秒前
29秒前
Jesica完成签到,获得积分10
32秒前
小菜鸡完成签到 ,获得积分10
33秒前
zhanghaotol发布了新的文献求助10
35秒前
Akim应助zheng_zhang2001采纳,获得10
37秒前
逍遥游完成签到,获得积分10
37秒前
朴素的从灵完成签到 ,获得积分10
39秒前
40秒前
42秒前
SHUIw完成签到 ,获得积分10
43秒前
鼠鼠想养猫完成签到,获得积分10
43秒前
复杂念梦发布了新的文献求助10
46秒前
46秒前
jinyu完成签到,获得积分10
47秒前
66完成签到,获得积分10
47秒前
leo发布了新的文献求助10
47秒前
花儿在做实验完成签到,获得积分10
48秒前
50秒前
高高代珊完成签到 ,获得积分10
51秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
Sphäroguß als Werkstoff für Behälter zur Beförderung, Zwischen- und Endlagerung radioaktiver Stoffe - Untersuchung zu alternativen Eignungsnachweisen: Zusammenfassender Abschlußbericht 1500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The Three Stars Each: The Astrolabes and Related Texts 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2469037
求助须知:如何正确求助?哪些是违规求助? 2136228
关于积分的说明 5443029
捐赠科研通 1860861
什么是DOI,文献DOI怎么找? 925477
版权声明 562694
科研通“疑难数据库(出版商)”最低求助积分说明 495093