Artificial intelligence image-based prediction models in IBD exhibit high risk of bias: A systematic review

医学 人工智能 缺少数据 结肠镜检查 机器学习 内科学 计算机科学 结直肠癌 癌症
作者
Xiaoxuan Liu,James Reigle,V. B. Surya Prasath,Jasbir Dhaliwal
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108093-108093 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108093
摘要

There has been an increase in the development of both machine learning (ML) and deep learning (DL) prediction models in Inflammatory Bowel Disease. We aim in this systematic review to assess the methodological quality and risk of bias of ML and DL IBD image-based prediction studies. We searched three databases, PubMed, Scopus and Embase, to identify ML and DL diagnostic or prognostic predictive models using imaging data in IBD, to Dec 31, 2022. We restricted our search to include studies that primarily used conventional imaging data, were undertaken in human participants, and published in English. Two reviewers independently reviewed the abstracts. The methodological quality of the studies was determined, and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). Forty studies were included, thirty-nine developed diagnostic models. Seven studies utilized ML approaches, six were retrospective and none used multicenter data for model development. Thirty-three studies utilized DL approaches, ten were prospective, and twelve multicenter studies. Overall, all studies demonstrated high risk of bias. ML studies were evaluated in 4 domains all rated as high risk of bias: participants (6/7), predictors (1/7), outcome (3/7), and analysis (7/7), and DL studies evaluated in 3 domains: participants (24/33), outcome (10/33), and analysis (18/33). The majority of image-based studies used colonoscopy images. The risk of bias was high in AI IBD image-based prediction models, owing to insufficient sample size, unreported missingness and lack of an external validation cohort. Models with a high risk of bias are unlikely to be generalizable and suitable for clinical implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧心的绮彤完成签到,获得积分20
刚刚
4秒前
7秒前
8秒前
8秒前
zho应助贾晓宇采纳,获得10
8秒前
Amin发布了新的文献求助10
9秒前
YYYYYYYYY完成签到,获得积分10
10秒前
11秒前
布丁发布了新的文献求助10
11秒前
隐形曼青应助丰富向松采纳,获得20
13秒前
17秒前
Amin完成签到,获得积分10
19秒前
美满的摩托完成签到,获得积分20
20秒前
20秒前
21秒前
奋斗不二完成签到,获得积分10
23秒前
25秒前
Nicole发布了新的文献求助10
25秒前
27秒前
zdzsd发布了新的文献求助20
28秒前
绫艾完成签到,获得积分10
29秒前
29秒前
NCHU发布了新的文献求助10
30秒前
友好的孤容完成签到,获得积分10
31秒前
科研通AI5应助Jiancui采纳,获得10
33秒前
绿藻头关注了科研通微信公众号
34秒前
37秒前
39秒前
恋雅颖月发布了新的文献求助10
42秒前
小二郎应助nana采纳,获得10
43秒前
iu发布了新的文献求助10
44秒前
44秒前
忧郁冰真完成签到,获得积分10
45秒前
46秒前
胖小羊发布了新的文献求助10
46秒前
Jiancui发布了新的文献求助10
49秒前
哆啦A梦发布了新的文献求助10
50秒前
文艺的芫发布了新的文献求助10
50秒前
汉堡包应助NCHU采纳,获得10
51秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787206
求助须知:如何正确求助?哪些是违规求助? 3332832
关于积分的说明 10257666
捐赠科研通 3048201
什么是DOI,文献DOI怎么找? 1673028
邀请新用户注册赠送积分活动 801580
科研通“疑难数据库(出版商)”最低求助积分说明 760287