混乱的
计算机科学
控制器(灌溉)
弹道
非线性系统
控制理论(社会学)
噪音(视频)
赫农地图
混沌系统
动力系统理论
控制(管理)
人工智能
图像(数学)
物理
天文
生物
量子力学
农学
作者
Robert M. Kent,Wendson A. S. Barbosa,Daniel J. Gauthier
出处
期刊:Chaos
[American Institute of Physics]
日期:2024-02-01
卷期号:34 (2)
被引量:14
摘要
In this work, we combine nonlinear system control techniques with next-generation reservoir computing, a best-in-class machine learning approach for predicting the behavior of dynamical systems. We demonstrate the performance of the controller in a series of control tasks for the chaotic Hénon map, including controlling the system between unstable fixed points, stabilizing the system to higher order periodic orbits, and to an arbitrary desired state. We show that our controller succeeds in these tasks, requires only ten data points for training, can control the system to a desired trajectory in a single iteration, and is robust to noise and modeling error.
科研通智能强力驱动
Strongly Powered by AbleSci AI