Comparison between inverse-probability weighting and multiple imputation in Cox model with missing failure subtype

逆概率加权 缺少数据 插补(统计学) 加权 反概率 计算机科学 估计员 统计 数据挖掘 稳健性(进化) 计量经济学 数学 后验概率 人工智能 机器学习 医学 贝叶斯概率 放射科 生物化学 化学 基因
作者
Fuyu Guo,Benjamin Langworthy,Shuji Ogino,Molin Wang
出处
期刊:Statistical Methods in Medical Research [SAGE Publishing]
卷期号:33 (2): 344-356
标识
DOI:10.1177/09622802231226328
摘要

Identifying and distinguishing risk factors for heterogeneous disease subtypes has been of great interest. However, missingness in disease subtypes is a common problem in those data analyses. Several methods have been proposed to deal with the missing data, including complete-case analysis, inverse-probability weighting, and multiple imputation. Although extant literature has compared these methods in missing problems, none has focused on the competing risk setting. In this paper, we discuss the assumptions required when complete-case analysis, inverse-probability weighting, and multiple imputation are used to deal with the missing failure subtype problem, focusing on how to implement these methods under various realistic scenarios in competing risk settings. Besides, we compare these three methods regarding their biases, efficiency, and robustness to model misspecifications using simulation studies. Our results show that complete-case analysis can be seriously biased when the missing completely at random assumption does not hold. Inverse-probability weighting and multiple imputation estimators are valid when we correctly specify the corresponding models for missingness and for imputation, and multiple imputation typically shows higher efficiency than inverse-probability weighting. However, in real-world studies, building imputation models for the missing subtypes can be more challenging than building missingness models. In that case, inverse-probability weighting could be preferred for its easy usage. We also propose two automated model selection procedures and demonstrate their usage in a study of the association between smoking and colorectal cancer subtypes in the Nurses’ Health Study and Health Professional Follow-Up Study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
czephyr完成签到,获得积分10
1秒前
1秒前
2秒前
香蕉觅云应助朴素的凡梦采纳,获得10
2秒前
Aoman完成签到,获得积分20
4秒前
5秒前
系统提示完成签到,获得积分10
5秒前
5秒前
超帅的碱发布了新的文献求助10
6秒前
ForestYYY发布了新的文献求助10
7秒前
7秒前
AlwaysKim发布了新的文献求助10
9秒前
9秒前
10秒前
Vanilla完成签到 ,获得积分10
10秒前
顾矜应助董冬咚采纳,获得10
11秒前
Helium发布了新的文献求助10
12秒前
12秒前
13秒前
完美世界应助科研通管家采纳,获得10
14秒前
宇宙无敌完成签到 ,获得积分10
14秒前
JamesPei应助科研通管家采纳,获得30
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
15秒前
bkagyin应助小杨爱晒太阳采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
15秒前
大个应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
无心的平蝶完成签到 ,获得积分10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4132947
求助须知:如何正确求助?哪些是违规求助? 3669701
关于积分的说明 11604575
捐赠科研通 3366414
什么是DOI,文献DOI怎么找? 1849564
邀请新用户注册赠送积分活动 913115
科研通“疑难数据库(出版商)”最低求助积分说明 828453