Comparison of feature selection and data fusion of Fourier transform infrared and Raman spectroscopy for identifying watercolor ink

极限学习机 人工智能 特征选择 拉曼光谱 光谱学 人口 化学计量学 计算机科学 模式识别(心理学) 融合 材料科学 生物系统 光学 机器学习 人工神经网络 物理 语言学 哲学 量子力学 人口学 社会学 生物
作者
Ying‐Fang Zou,Aolin Zhang,Xiaobin Wang,Yang Lei,Meng Ding
出处
期刊:Journal of Forensic Sciences [Wiley]
卷期号:69 (2): 584-592 被引量:4
标识
DOI:10.1111/1556-4029.15468
摘要

Abstract The identification of different kinds of watercolor inks is an important work in the field of forensic science. Four different kinds of watercolor ink Spectroscopy data fusion strategies (Fourier Transform Infrared spectroscopy and Raman spectroscopy) combined with a non‐linear classification model (Extreme Learning Machine) were used to identify the brand of watercolor inks. The study chose Competitive Adaptive Reweighted Sampling (CARS), Random Frog (RF), Variable Combination Population Analysis‐Genetic Algorithm (VCPA‐GA), and Variable Combination Population Analysis‐Iteratively Retains Informative Variables (VCPA‐IRIV) to extract characteristic variables for mid‐level data fusion. The Cuckoo Search (CS) algorithm is used to optimize the extreme learning machine classification model. The results showed that the classification capacity of the mid‐level fusion spectra model was more satisfactory than that of single Infrared spectroscopy or Raman spectroscopy. The CS‐ELM models based on infrared spectroscopy used to recognize the watercolor ink according to brands (ZHENCAI, DELI, CHENGUANG, and STAEDTLER) obtained an accuracy of 66.67% in the test set using all spectral datasets. The accuracy of CS‐ELM models based on Raman spectroscopy was 67.39%. The characteristic wavelength selection algorithms effectively improved the accuracy of the CS‐ELM models. The classification accuracy of the mid‐level spectroscopy fusion model combined with the VCPA‐IRIV algorithm was 100%. The data fusion method increased effectively spectral information. The method could satisfactorily identify different brands of watercolor inks and support the preservation of artifacts, paintings, and forensic document examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿亮发布了新的文献求助10
刚刚
wuzhizhongbin完成签到,获得积分10
刚刚
1秒前
1秒前
小冯发布了新的文献求助10
2秒前
3秒前
4秒前
赘婿应助Possession采纳,获得10
4秒前
科研狗发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
君君应助ww960517采纳,获得10
6秒前
mao应助suwan采纳,获得10
7秒前
rubbish发布了新的文献求助10
7秒前
7秒前
小歪同学完成签到,获得积分20
8秒前
8秒前
汉堡包应助小冯采纳,获得10
8秒前
酷波er应助忧心的飞雪采纳,获得10
8秒前
9秒前
斯文败类应助泥花采纳,获得30
9秒前
小余发布了新的文献求助10
10秒前
冷傲山彤完成签到,获得积分10
10秒前
Kai发布了新的文献求助10
11秒前
大小宇发布了新的文献求助10
12秒前
13秒前
14秒前
jj发布了新的文献求助10
14秒前
冷傲山彤发布了新的文献求助10
15秒前
16秒前
Hey发布了新的文献求助10
16秒前
快乐的纸飞机完成签到 ,获得积分10
17秒前
李泡泡完成签到,获得积分10
18秒前
今后应助飞快的珩采纳,获得10
18秒前
19秒前
金有财发布了新的文献求助10
19秒前
20秒前
科研通AI5应助小余采纳,获得10
20秒前
20秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462