Preparation and mechanisms of Cu–Ag alloy fibers with high strength and high conductivity

材料科学 合金 微观结构 电阻率和电导率 抛光 晶界 复合材料 电镀 冶金 纤维 导电体 电导率 纹理(宇宙学) 电气工程 图层(电子) 图像(数学) 人工智能 计算机科学 工程类 物理化学 化学
作者
Liang Kong,Xilin Zhu,Z.B. Xing,Yuqing Chang,Hao Huang,Yu Shu,Zhixiang Qi,Bin Wen,Penghui Li
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:895: 146219-146219
标识
DOI:10.1016/j.msea.2024.146219
摘要

Cu–Ag alloy fibers are known for their excellent electrical and thermal conductivity, and are widely used in various fields, such as electronics, transportation, and processing due to their low price and simple preparation process. Nevertheless, this trade-off relation between strength and electrical conductivity of Cu–Ag alloys restricts their scope of application. In order to prepare Cu–Ag alloy fibers with high strength and high electrical conductivity, three different processes: cold drawing, surface electrodeposition and electrolytic polishing, are investigated and comprehensively utilized. By comparing the evolution of microstructure and properties in Cu–Ag alloy fibers, along with the corresponding mechanisms for strengthening and conductivity, one most suitable process path is explored. Cold-drawing is utilized to reduce the grain size, which, in turn, enhances the strength of the fibers. Meanwhile, it refines the internal grains of the alloy by shearing and deflecting each other, ultimately resulting in a fiber texture along the drawing direction. The main contributors to the strength of Cu–Ag alloy fibers are dislocation strengthening, grain boundary strengthening, and texture strengthening. The slight difference is that for electrical conductivity, dislocation and grain boundary play a crucial role. Electrodeposition of copper on the fiber surface is an effective method for improving the electrical conductivity of the fiber, which is achieved by creating a dense conductive pathway on the surface of the fiber. However, this process leads to a reduction in strength. Therefore, electrolytic polishing is subsequently used to regulate the plating thickness in order to obtain Cu–Ag alloy fiber with synchronous increase of strength and electrical conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
gstaihn发布了新的文献求助10
5秒前
Gavin完成签到,获得积分10
5秒前
小岳同学发布了新的文献求助30
9秒前
漂亮夏兰完成签到 ,获得积分10
10秒前
10秒前
10秒前
spirit完成签到 ,获得积分10
13秒前
GQ完成签到,获得积分10
13秒前
大个应助Crimson采纳,获得10
14秒前
15秒前
liuuuuu发布了新的文献求助10
15秒前
达西西发布了新的文献求助10
16秒前
wulixin完成签到,获得积分10
17秒前
华仔应助ning采纳,获得10
26秒前
liuuuuu完成签到,获得积分10
26秒前
liu bo完成签到,获得积分10
28秒前
29秒前
铁妹儿完成签到 ,获得积分10
30秒前
orixero应助ning采纳,获得10
31秒前
31秒前
NexusExplorer应助wen采纳,获得10
32秒前
安济应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
爆米花应助科研通管家采纳,获得10
35秒前
秋雪瑶应助科研通管家采纳,获得10
35秒前
SciGPT应助ning采纳,获得10
35秒前
加油完成签到 ,获得积分10
35秒前
40秒前
今后应助ning采纳,获得10
40秒前
达西西完成签到 ,获得积分10
44秒前
小金刀发布了新的文献求助10
47秒前
桐桐应助乐观的雅青采纳,获得10
47秒前
49秒前
49秒前
向路路发布了新的文献求助10
50秒前
CodeCraft应助如约而至采纳,获得10
50秒前
56秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
行動データの計算論モデリング 強化学習モデルを例として 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2547452
求助须知:如何正确求助?哪些是违规求助? 2176252
关于积分的说明 5603165
捐赠科研通 1897045
什么是DOI,文献DOI怎么找? 946545
版权声明 565383
科研通“疑难数据库(出版商)”最低求助积分说明 503793