MOF-on-MOF-derived CuO@In2O3 s-scheme heterojunction with core–shell structure for efficient photocatalytic CO2 reduction

光催化 异质结 还原(数学) 方案(数学) 壳体(结构) 材料科学 化学工程 纳米技术 化学 光电子学 工程类 数学 催化作用 复合材料 几何学 数学分析 生物化学
作者
Xing Liu,Yuhan Wu,Yudong Li,Xiaohui Yang,Qinghai Ma,Juhua Luo
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:485: 149855-149855 被引量:48
标识
DOI:10.1016/j.cej.2024.149855
摘要

Herein, a MOF-on-MOF-derived In2O3 nanosheets encapsulating CuO ortho-octahedral core–shell structure CuO@In2O3 S-Scheme heterojunction composite was designed and prepared by a new strategy of interfacial engineering integrating optical and catalytic activity centers, which endowed with the catalyst's dual properties of both highly efficient light absorption and charge separation. The In2O3 shell wraps around the CuO core in a tight coaxial contact, allowing them have the largest contact surface thus effectively promoting the transport of electrons and holes separated at the interface. More importantly, CuO@In2O3 formed a binuclear center could enhance the CO2 adsorption to facilitate the subsequent catalytic reaction and promote the charge transfer through Cu-O-In bonds. The successful construction of S-scheme heterojunction not only promotes the spatial separation of electron-hole pairs, but also maintains the strongest redox potentials of CuO and In2O3 at the conduction and valence band positions. Notably, the intermediates in the CO2 photoreduction process were probed by in situ infrared spectroscopy and a possible photocatalytic mechanism was hypothesized. Under visible light irradiation, the CuO@In2O3 rates of photocatalytic reduction of CO2 to produce CH4 and CO were 190.32 μmol g−1h−1 and 500.46 μmol g−1h−1, which are 2.1, 10.3 times and 2.4, 7.9 times higher than pristine CuO and In2O3, respectively. This work provides a feasible strategy for the design and synthesis of binuclear-centered photocatalysts with interfacial engineered modulation and application to the photocatalytic reduction of CO2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
褚友菱完成签到 ,获得积分10
1秒前
栾欣完成签到,获得积分20
1秒前
nine2652发布了新的文献求助10
2秒前
CH发布了新的文献求助10
4秒前
小马甲应助ssgtt采纳,获得10
5秒前
5秒前
LiuRuizhe完成签到,获得积分10
6秒前
QL关闭了QL文献求助
6秒前
8秒前
9秒前
dzf发布了新的文献求助10
11秒前
12秒前
东风完成签到,获得积分10
13秒前
13秒前
无聊的幻天完成签到,获得积分10
15秒前
日出发布了新的文献求助10
15秒前
16秒前
17秒前
风吹似夏发布了新的文献求助10
19秒前
dzf完成签到,获得积分10
19秒前
听风飘逸发布了新的文献求助10
20秒前
小蘑菇应助日出采纳,获得10
21秒前
22秒前
22秒前
xiaoshi完成签到,获得积分10
24秒前
远方发布了新的文献求助10
26秒前
27秒前
vivian发布了新的文献求助20
27秒前
28秒前
31秒前
31秒前
君莫笑发布了新的文献求助10
31秒前
顾矜应助爱雨霁采纳,获得10
36秒前
37秒前
自由大叔完成签到 ,获得积分10
38秒前
Dawn完成签到 ,获得积分10
40秒前
赟yun完成签到,获得积分0
40秒前
Lucas应助听风飘逸采纳,获得10
40秒前
42秒前
风吹似夏完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777369
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211549
捐赠科研通 3038120
什么是DOI,文献DOI怎么找? 1667117
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103