The SSHVEP Paradigm-Based Brain Controlled Method for Grasping Robot Using MVMD Combined CNN Model

解码方法 卷积神经网络 计算机科学 人工智能 机器人 符号 国家(计算机科学) 算法 语音识别 模式识别(心理学) 数学 算术
作者
Rui Li,D.-J. Bai,Zhijun Li,Shiqiang Yang,Weiping Liu,Yichi Zhang,Jincao Zhou,Jing Luo,Wen Wang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 2564-2578
标识
DOI:10.1109/tnsre.2024.3425636
摘要

In recent years, the steady-state visual evoked potentials (SSVEP) based brain control method has been employed to help people with disabilities because of its advantages of high information transmission rate and low training time. However, the existing SSVEP brain control methods cannot adapt to dynamic or unstructured environments. Moreover, the recognition accuracy from the conventional decoding algorithm still needs to improve. To address the above problems, this study proposed a steady-state hybrid visual evoked potentials (SSHVEP) paradigm using the grasping targets in their environment to improve the connection between the subjects' and their dynamic environments. Moreover, a novel EEG decoding method, using the multivariate variational mode decomposition (MVMD) algorithm for adaptive sub-band division and convolutional neural network (CNN) for target recognition, was applied to improve the decoding accuracy of the SSHVEPs. 18 subjects participated in the offline and online experiments. The offline accuracy across 18 subjects by the 9-target SSHVEP paradigm was up to $95.41~\pm ~2.70$ %, which is a 5.80% improvement compared to the conventional algorithm. To further validate the performance of the proposed method, the brain-controlled grasping robot system using the SSHVEP paradigm was built. The average accuracy reached $93.21~\pm ~10.18$ % for the online experiment. All the experimental results demonstrated the effectiveness of the brain-computer interaction method based on the SSHVEP paradigm and the MVMD combined CNN algorithm studied in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AJ完成签到 ,获得积分10
1秒前
lcylidong完成签到,获得积分10
1秒前
1秒前
2秒前
自然水杯完成签到,获得积分10
2秒前
lizhiqian2024发布了新的文献求助10
3秒前
科研通AI5应助江莱采纳,获得10
3秒前
星辰大海应助hanhan采纳,获得10
3秒前
酷酷幻柏发布了新的文献求助10
4秒前
共享精神应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
8秒前
老茗同学给老茗同学的求助进行了留言
9秒前
敏感初露完成签到,获得积分10
9秒前
情怀应助刘某采纳,获得10
11秒前
11秒前
南风发布了新的文献求助10
12秒前
完美世界应助酷酷幻柏采纳,获得10
12秒前
敏感初露发布了新的文献求助10
13秒前
华仔应助有何丿不可采纳,获得10
13秒前
韩野发布了新的文献求助10
13秒前
jasmine完成签到,获得积分10
14秒前
15秒前
16秒前
小商发布了新的文献求助10
16秒前
852应助碧蓝飞雪采纳,获得10
17秒前
完美世界应助敏感初露采纳,获得10
17秒前
17秒前
喜悦发布了新的文献求助10
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802475
求助须知:如何正确求助?哪些是违规求助? 3348107
关于积分的说明 10336540
捐赠科研通 3064030
什么是DOI,文献DOI怎么找? 1682365
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997