The SSHVEP Paradigm-Based Brain Controlled Method for Grasping Robot Using MVMD Combined CNN Model

解码方法 卷积神经网络 计算机科学 人工智能 机器人 符号 国家(计算机科学) 算法 语音识别 模式识别(心理学) 数学 算术
作者
Rui Li,D.-J. Bai,Zhijun Li,Shiqiang Yang,Weiping Liu,Yichi Zhang,Jincao Zhou,Jing Luo,Wen Wang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 2564-2578
标识
DOI:10.1109/tnsre.2024.3425636
摘要

In recent years, the steady-state visual evoked potentials (SSVEP) based brain control method has been employed to help people with disabilities because of its advantages of high information transmission rate and low training time. However, the existing SSVEP brain control methods cannot adapt to dynamic or unstructured environments. Moreover, the recognition accuracy from the conventional decoding algorithm still needs to improve. To address the above problems, this study proposed a steady-state hybrid visual evoked potentials (SSHVEP) paradigm using the grasping targets in their environment to improve the connection between the subjects' and their dynamic environments. Moreover, a novel EEG decoding method, using the multivariate variational mode decomposition (MVMD) algorithm for adaptive sub-band division and convolutional neural network (CNN) for target recognition, was applied to improve the decoding accuracy of the SSHVEPs. 18 subjects participated in the offline and online experiments. The offline accuracy across 18 subjects by the 9-target SSHVEP paradigm was up to $95.41~\pm ~2.70$ %, which is a 5.80% improvement compared to the conventional algorithm. To further validate the performance of the proposed method, the brain-controlled grasping robot system using the SSHVEP paradigm was built. The average accuracy reached $93.21~\pm ~10.18$ % for the online experiment. All the experimental results demonstrated the effectiveness of the brain-computer interaction method based on the SSHVEP paradigm and the MVMD combined CNN algorithm studied in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
NexusExplorer应助蓝色斑马采纳,获得10
3秒前
4秒前
4秒前
迷路的秋发布了新的文献求助10
5秒前
18746005898发布了新的文献求助10
6秒前
8R60d8应助sasa采纳,获得10
6秒前
派先生完成签到,获得积分10
7秒前
addd完成签到 ,获得积分20
7秒前
8秒前
咎青文完成签到,获得积分10
8秒前
科研通AI5应助白老师采纳,获得10
8秒前
哈噜噗噜发布了新的文献求助10
9秒前
韩书琴发布了新的文献求助10
9秒前
JamesPei应助启航采纳,获得10
10秒前
呀y完成签到,获得积分10
11秒前
九千七完成签到,获得积分10
11秒前
nexus完成签到,获得积分10
11秒前
105400155完成签到,获得积分10
12秒前
九千七发布了新的文献求助10
14秒前
14秒前
隐形曼青应助萌123采纳,获得10
14秒前
哒哒星人完成签到,获得积分10
15秒前
15秒前
科研通AI6应助可露丽采纳,获得10
15秒前
阳光冰颜完成签到,获得积分10
17秒前
17秒前
彭于晏应助yx采纳,获得10
18秒前
zephyr发布了新的文献求助10
18秒前
breeze完成签到 ,获得积分10
20秒前
小马甲应助心静如水采纳,获得10
20秒前
科研通AI2S应助周周采纳,获得10
20秒前
CipherSage应助西瓜西瓜采纳,获得10
21秒前
二呆熊发布了新的文献求助30
23秒前
余姚完成签到,获得积分10
23秒前
25秒前
25秒前
25秒前
茸蒿完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4404595
求助须知:如何正确求助?哪些是违规求助? 3890679
关于积分的说明 12108102
捐赠科研通 3535473
什么是DOI,文献DOI怎么找? 1939927
邀请新用户注册赠送积分活动 980836
科研通“疑难数据库(出版商)”最低求助积分说明 877501