Accelerating breast MRI acquisition with generative AI models

医学 神经组阅片室 乳房磁振造影 欠采样 放射科 图像质量 磁共振成像 医学物理学 人工智能 计算机科学 乳腺摄影术 图像(数学) 乳腺癌 内科学 神经学 癌症 精神科
作者
Augustine Okolie,Timm Dirrichs,Luisa Huck,Sven Nebelung,Soroosh Tayebi Arasteh,Teresa Nolte,Tianyu Han,Christiane Kühl,Daniel Truhn
出处
期刊:European Radiology [Springer Science+Business Media]
被引量:1
标识
DOI:10.1007/s00330-024-10853-x
摘要

Abstract Objectives To investigate the use of the score-based diffusion model to accelerate breast MRI reconstruction. Materials and methods We trained a score-based model on 9549 MRI examinations of the female breast and employed it to reconstruct undersampled MRI images with undersampling factors of 2, 5, and 20. Images were evaluated by two experienced radiologists who rated the images based on their overall quality and diagnostic value on an independent test set of 100 additional MRI examinations. Results The score-based model produces MRI images of high quality and diagnostic value. Both T1- and T2-weighted MRI images could be reconstructed to a high degree of accuracy. Two radiologists rated the images as almost indistinguishable from the original images (rating 4 or 5 on a scale of 5) in 100% (radiologist 1) and 99% (radiologist 2) of cases when the acceleration factor was 2. This fraction dropped to 88% and 70% for an acceleration factor of 5 and to 5% and 21% with an extreme acceleration factor of 20. Conclusion Score-based models can reconstruct MRI images at high fidelity, even at comparatively high acceleration factors, but further work on a larger scale of images is needed to ensure that diagnostic quality holds. Clinical relevance statement The number of MRI examinations of the breast is expected to rise with MRI screening recommended for women with dense breasts. Accelerated image acquisition methods can help in making this examination more accessible. Key Points Accelerating breast MRI reconstruction remains a significant challenge in clinical settings . Score-based diffusion models can achieve near-perfect reconstruction for moderate undersampling factors . Faster breast MRI scans with maintained image quality could revolutionize clinic workflows and patient experience .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高的山兰完成签到 ,获得积分10
刚刚
loey发布了新的文献求助10
1秒前
zc发布了新的文献求助20
1秒前
科研助手6应助库里强采纳,获得10
2秒前
2秒前
3秒前
今后应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得30
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
阿曾完成签到 ,获得积分10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
羲和之梦发布了新的文献求助10
5秒前
IMxYang应助科研通管家采纳,获得10
5秒前
Alex应助科研通管家采纳,获得20
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
蛇虫鼠蚁应助科研通管家采纳,获得100
6秒前
非而者厚应助科研通管家采纳,获得10
6秒前
非而者厚应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
夏淼发布了新的文献求助10
7秒前
快乐难敌发布了新的文献求助10
7秒前
英俊的铭应助许诺采纳,获得10
8秒前
8秒前
胡萝卜完成签到,获得积分10
9秒前
9秒前
11秒前
ing完成签到,获得积分10
11秒前
nakl完成签到,获得积分10
12秒前
温暖的钻石完成签到,获得积分10
13秒前
婉婉完成签到,获得积分10
13秒前
564654SDA完成签到,获得积分10
13秒前
哈哈2022完成签到,获得积分10
14秒前
ing发布了新的文献求助10
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816877
求助须知:如何正确求助?哪些是违规求助? 3360272
关于积分的说明 10407488
捐赠科研通 3078282
什么是DOI,文献DOI怎么找? 1690682
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958