Rupture risk assessment in cerebral arteriovenous malformations: an ensemble model using hemodynamic and morphological features

医学 血流动力学 颅内动静脉畸形 心脏病学 脑血管循环 内科学 放射科 脑血流 脑血管造影 血管造影
作者
Haoyu Zhu,Lian Liu,Shikai Liang,Chao Ma,Yuzhou Chang,Longhui Zhang,Xiguang Fu,Yuqi Song,Jiarui Zhang,Yupeng Zhang,Chuhan Jiang
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-022208 被引量:3
标识
DOI:10.1136/jnis-2024-022208
摘要

Background Cerebral arteriovenous malformation (AVM) is a cerebrovascular disorder posing a risk for intracranial hemorrhage. However, there are few reliable quantitative indices to predict hemorrhage risk accurately. This study aimed to identify potential biomarkers for hemorrhage risk by quantitatively analyzing the hemodynamic and morphological features within the AVM nidus. Methods This study included three datasets comprising consecutive patients with untreated AVMs between January 2008 to December 2023. Training and test datasets were used to train and evaluate the model. An independent validation dataset of patients receiving conservative treatment was used to evaluate the model performance in predicting subsequent hemorrhage during follow-up. Hemodynamic and morphological features were quantitatively extracted based on digital subtraction angiography (DSA). Individual models using various machine learning algorithms and an ensemble model were constructed on the training dataset. Model performance was assessed using the confusion matrix-related metrics. Results This study included 844 patients with AVMs, distributed across the training (n=597), test (n=149), and validation (n=98) datasets. Five hemodynamic and 14 morphological features were quantitatively extracted for each patient. The ensemble model, constructed based on five individual machine-learning models, achieved an area under the curve of 0.880 (0.824–0.937) on the test dataset and 0.864 (0.769–0.959) on the independent validation dataset. Conclusion Quantitative hemodynamic and morphological features extracted from DSA data serve as potential indicators for assessing the rupture risk of AVM. The ensemble model effectively integrated multidimensional features, demonstrating favorable performance in predicting subsequent rupture of AVM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助爱吃蒸蛋采纳,获得10
刚刚
科研通AI5应助马越采纳,获得30
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
lome发布了新的文献求助10
5秒前
自由香魔发布了新的文献求助10
7秒前
小蘑菇应助撸撸大仙采纳,获得10
7秒前
8秒前
9秒前
学术扛把子完成签到 ,获得积分10
10秒前
11秒前
11秒前
wlx完成签到 ,获得积分10
11秒前
kwok完成签到 ,获得积分10
12秒前
Ma发布了新的文献求助10
12秒前
滕擎发布了新的文献求助10
14秒前
科研通AI5应助难过如音采纳,获得10
15秒前
16秒前
bkagyin应助wang采纳,获得10
17秒前
17秒前
shuaiBsen完成签到,获得积分10
18秒前
Ma完成签到,获得积分20
20秒前
爱吃蒸蛋发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
23秒前
在水一方应助小作坊钳工采纳,获得10
24秒前
25秒前
DDDD发布了新的文献求助10
26秒前
26秒前
29秒前
爱吃蒸蛋完成签到,获得积分10
30秒前
31秒前
112我的发布了新的文献求助10
32秒前
phaman发布了新的文献求助10
33秒前
wlx关注了科研通微信公众号
34秒前
桐桐应助耀子采纳,获得10
35秒前
蜗牛发布了新的文献求助10
37秒前
40秒前
海虎爆破拳完成签到,获得积分10
42秒前
可靠的蜗牛完成签到 ,获得积分10
43秒前
拼搏雪瑶完成签到 ,获得积分10
44秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202206
求助须知:如何正确求助?哪些是违规求助? 3736996
关于积分的说明 11767005
捐赠科研通 3409371
什么是DOI,文献DOI怎么找? 1870588
邀请新用户注册赠送积分活动 926133
科研通“疑难数据库(出版商)”最低求助积分说明 836439